RESEARCH ARTICLE

Sexual color ornamentation, microhabitat choice, and thermal physiology in the common wall lizard (*Podarcis muralis*)

Maravillas Ruiz Miñano^{1,2} | Tobias Uller² | Amanda K. Pettersen^{2,3} | Andreas Nord² | Luisa J. Fitzpatrick¹ | Geoffrey M. While¹

Correspondence

Geoffrey M. While, Discipline of Biological Sciences, University of Tasmania, Hobart, Tas 7005, Australia.
Email: gwhile@utas.edu.au

Funding information

Knut and Alice Wallenberg Foundations; Swedish Research Council, Grant/Award Numbers: 2014-04465, 2017-03846, 2023-04686

Abstract

Common wall lizards (Podarcis muralis) in Italy show a striking variation in body coloration across the landscape, with highly exaggerated black and green colors in hot and dry climates and brown and white colors in cool and wet climates. Males are more intensely colored than females, and previous work has suggested that the maintenance of variation in coloration across the landscape reflects climatic effects on the strength of male-male competition, and through this sexual selection. However climatic effects on the intensity of male-male competition would need to be exceptionally strong to fully explain the geographic patterns of color variation. Thus, additional processes may contribute to the maintenance of color variation. Here we test the hypothesis that selection for green and black ornamentation in the context of male-male competition is opposed by selection against ornamentation because the genes involved in the regulation of coloration have pleiotropic effects on thermal physiology, such that ornamentation is selected against in cool climates. Field observations revealed no association between body coloration and microhabitat use or field active body temperatures. Consistent with these field data, lizards at the extreme ends of the phenotypic distribution for body coloration did not show any differences in critical minimum temperature, preferred body temperature, temperature-dependent metabolic rate, or evaporative water loss when tested in the laboratory. Combined, these results provide no evidence that genes that underlie sexual ornamentation are selected against in cool climate because of pleiotropic effects on thermal biology.

KEYWORDS

coloration, metabolism, microhabitat, pleiotropy, *Podarcis muralis*, sexual selection, thermal physiology

[Correction added on 21 August 2024, after first online publication: The third author's name has been corrected]

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology published by Wiley Periodicals LLC.

¹Discipline of Biological Sciences, University of Tasmania, Hobart, Australia

²Department of Biology, Lund University, Lund, Sweden

³School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia

24715646, 2024, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jez.2859.

Wiley Online Library on [08/11/2025]. See the Terms

and Conditions (https://onlinelibrary.wiley.com/term:

and-conditions) on

Wiley Online Library for rules

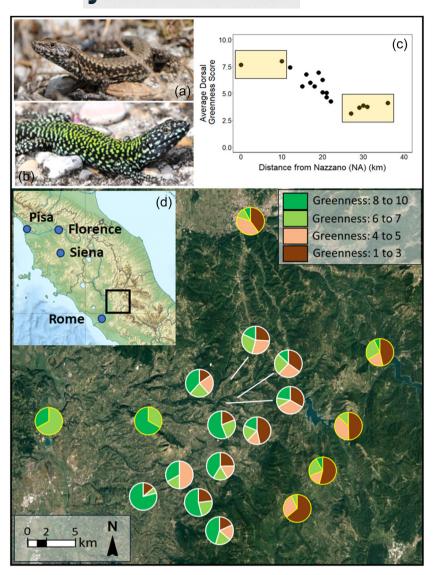
of use; OA

are governed by the

applicable Creative Commons License

1 | INTRODUCTION

Animal coloration often varies across climatic and environmental gradients (Cole & Endler, 2015; Dale et al., 2015; Doutrelant et al., 2016; Fitzpatrick, 1994; Runemark et al., 2010; Stelbrink et al., 2019; Wallace, 1877). The extent of this variation can be the result of spatial variation in the functional significance of color. For example, animals can use color to reduce predation risk through camouflage or aposematism (reviewed in Ruxton et al., 2019), as an extravagant sexual signal to attract mates or ward off competitors (Candolin, 1999; Endler, 1983) or to provide thermoregulatory benefits (Clusella Trullas et al., 2007; Stuart-Fox et al., 2017). Geographic variation in predation pressure, intensity of competition for mates, or climate can, therefore, alter the strength and direction of selection on coloration across the landscape, contributing to adaptive divergence in coloration.


Selective pressures do not act in isolation. Different forms of selection can act on coloration in concert. For example, in alpine populations of toad-headed agamas (Phrynocephalus putjatai) dark coloration functions both in camouflage and thermoregulation (Sun et al., 2024). However, coloration can also reflect trade-offs between different forms of selection (Chen et al., 2013; Shultz & Burns, 2017). For example, in tiger moths, selection on dark coloration in cool climates, because it provides thermoregulatory benefits, is opposed by natural selection arising from increased conspicuousness to predators (Hegna et al., 2013; see also Kraemer et al., 2019; Moore et al., 2019). In butterflies, wing melanization is favored by natural selection at high altitudes but opposed by male preference for less melanized females across the elevational range (Ellers & Boggs, 2003). These trade-offs can also play out at a mechanistic level. For example, many of the key pigments that underpin variation in coloration (e.g., melanin, carotenoids, and pteridines) have pleiotropic effects on physiological and behavioral traits (Ducrest et al., 2008; Olson & Owens, 1998; Roulin & Ducrest, 2011; Roulin, 2016; San-Jose & Roulin, 2018; Svensson & Wong, 2011). For example, genes associated with melanocortin pathways, which regulate melanistic coloration, affect female sexual receptivity, aggressiveness, stress response, as well as the regulation of metabolic rate and body temperature (see Ducrest et al., 2008 for a review). Genes associated with carotenoid and pterin pigmentation have also been suggested to be involved in metabolic processes (Johnson & Hill, 2013; Longo, 2009; Powers & Hill, 2021), locomotor ability (Jiang et al., 2020) and reproduction (Surai, 2002). In environments where these genes reduce fitness through their pleiotropic effects on these traits (e.g., metabolic rate, reproduction, aggression) they have the potential to constrain positive selection on coloration and thus contribute significantly to patterns of color variation across the landscape (Ducrest et al., 2008).

Common wall lizards (*Podarcis muralis*) in Italy exhibit striking variation in body coloration. At one end of this continuum, individuals representing the ancestral phenotype for this species have brown dorsal coloration with limited black coloration on their ventral surface (here after referred to as the "ancestral phenotype"; Figure 1a). At the other end of this continuum, individuals exhibit phenotypes that are characterized by bright green dorsal coloration and extensive black

coloration, in particular on the ventral surface (hereafter referred to as the "nigriventris phenotype" sensu Bohme, 1986; Figure 1b). Previous research has shown that the nigriventris phenotype has a relatively recent origin, having emerged around modern day Rome (Yang et al., 2018). Males that express the nigriventris phenotype are dominant over males that express the ancestral phenotype in experimental contact zones, resulting in large differences in courtship and reproductive success (i.e., Heathcote et al., 2016; MacGregor et al., 2017; Pérez i de Lanuza et al., 2013; While et al., 2015). This has facilitated the spread of the nigriventris phenotype across the landscape where it has replaced the ancestral phenotype first in its parental lineage and then via introgression into a distantly related wall lizard lineage (Yang et al., 2018, 2020). However, the spread of this phenotype both within and between lineages is not uniform, it is strongly mediated by climate. Specifically, the current distribution of the nigriventris phenotype is associated with a hot and dry climate with the ancestral phenotype maintained in cool and wet climates (Miñano et al., 2021). One explanation for this pattern is climatic effects on the strength of sexual selection. Specifically, warm and dry climatic conditions reduce the temporal clustering of receptive females and increase male-male competition, providing a climatic context for the individuals with the nigriventris phenotype to be selected (Miñano et al., 2021 see also García-Roa et al., 2020; Olsson, Schwartz, et al., 2011; Olsson, Wapstra, et al., 2011). However, the maintenance of such fine-scale patterns of color variation in the presence of high gene flow (e.g., Miñano et al., 2022; Yang et al., 2018), would require extraordinarily strong climatic effects on the intensity of male-male competition. Thus, additional processes may contribute to the maintenance of color variation within this species.

One potential explanation for the observed variation in coloration across climatic gradients is that it not only relects the result of positive sexual selection for the nigriventris phenotype in warmer environments but also natural selection against the nigriventris phenotype in cooler environments. This would occur if the melanin and carotenoid pigments that are responsible for the differences in coloration between the ancestral and nigriventris phenotype (Feiner et al., 2024) were underpinned by pleiotropic genes, affecting traits that provide a fitness disadvantage in cool climates. Based on existing knowledge (see above), the most likely candidate traits are those associated with thermal preference and temperature-dependent performance. Here we tested if such differences in thermal preference and performance are intrinsically linked to ornamentation, and thus might contribute to geographic variation in coloration. To achieve this, we conducted laboratory assays to test if thermoregulatory and metabolic traits differed between individuals expressing the two-phenotypic extremes (ancestral vs. nigriventris). We combined this with field studies that explored the extent to which individuals with different coloration differed in their field active body temperature or segregated with respect to their microhabitat use (measured as the proportion of vegetation, buildings, bare ground, and climatic properties of their capture locations). If the geographic distribution of the nigriventris phenotype is partly explained by antagonistic pleiotropy caused by inherent associations between coloration and thermal physiology, we

FIGURE 1 (a) and (b) A male Podarcis muralis with the ancestral brown-and-white phenotype and the exaggerated "nigriventris" green-andblack phenotype respectively. (c) and (d) the distribution of dorsal greenness across the 18 populations sampled from Nazzano in the west to Lago del Salto in the east. (c) The change in average greenness in each population as a function of distance from west to east. (d) Pie charts indicating the percentage of lizards scored in each of four broad categories of dorsal greenness (based on greenness scores spanning 1-10). Populations at the extreme ends of this distribution (highlighted in orange) were excluded from further analysis. Population Vicovaro, not shown, was excluded due to low sample size. The insert to (d) provides the geographical context for the study location within Italy.

can make the following predictions: (i) individuals with the nigriventris phenotype will have higher preferred body temperature, maintain a lower resting metabolic rate at upper test temperatures, and a higher critical thermal minimum (CT_{min}) than individuals with the ancestral phenotype in the laboratory. (ii) Individuals with the nigriventris phenotype will occupy warmer and drier microhabitats in the field, matching their thermal requirements and ameliorating the effects of possible trade-offs between thermal physiology and sexual selection. (iii) Individuals with the nigriventris phenotype will be active at higher temperatures in the field.

METHODS 2

2.1 Field microhabitat preference

Field data collection was conducted during the wall lizard breeding season, from March 28 to May 7, 2019, in 19 locations across the Rieti and Rome regions of central Italy (Table S1). Wall lizards within

this region express the full range of coloration, from individuals exhibiting the ancestral (brown-and-white) phenotype to individuals exhibiting the nigriventris (green-and-black) phenotype (Figure 1; Figure S1). The high variation in coloration within a small geographic region (see below), high lizard abundance, and lack of population genetic structure (Miñano et al., 2022; Yang et al., 2018) is ideal for the purposes of this study.

We selected study locations within this region that had a wide diversity of possible microhabitats (e.g., towns, abandoned buildings, forest with and without rivers, vegetation, and other structures in fields and along country roads). We sampled lizards within each of these locations to address the aims outlined above. Field observations and sampling were performed during the hours of lizard activity (~9.00 to ~18.30) on days suitable for lizard activity. Lizards were captured (using noosing) opportunistically. Upon capture, we measured lizard body temperature (T_b) within 20 s of the lizard being captured using a cloacal thermometer (ET 959 Thermometer with a chromel-alumel [K type] thermocouple) (accuracy ± 0.5% of reading or ±1°C, whichever was greater). In total, we collected 316

24715646, 2024, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jez.2859, Wiley Online Library on [08/11/2025]. See the Terms

and Conditions (https://onlinelibrary.wiley.com/term:

and-conditions) on

Wiley Online Library for rules

of use; OA

articles are governed by the applicable Creative Commons License

individuals with exact point of capture (±5 m) recorded using a handheld Global Positioning System (GPS).

Using the GPS coordinates, we overlaid lizard locations onto a digitized map of the study region in Google Earth Pro and established the proportion of each lizard capture location represented by one of five microhabitat features: roads, buildings, vegetation, bare ground, major water sources. To achieve this, we established a buffer around each individual data point of 20 m diameter. This encompasses the average home range of a P. muralis (Abalos et al., 2020; Edsman, 1986) and was designed to capture the microhabitat features within a particular individual's home range. We then divided each lizard's home range into 5 × 5-m grid cells, resulting in 16 grid cells per individual, and assigned each grid cell to one of the five microhabitat features outlined above. This was achieved by creating a feature layer for each population and then assigning each grid cell to the most common feature layer that occurred within that grid. We could then use these data to calculate the percentage cover of the five feature classes within each lizard's home range. In addition to scoring microhabitat features ex situ, we also scored several aspects of the microhabitat in situ. This included surface temperature (T_{surf}) (using the thermometer and thermocouple combination described above) measured 5 mm from surface where the lizard was first observed, as well as air temperature (T_{air}) and humidity (using a thermometer with hygrometer [Velleman] DEM 105]) measured at or above the point of capture of each lizard. We also estimated the percentage canopy cover and the presence or absence of a competing species, the Italian wall lizard Podarcis siculus (within 10 m of where the lizard was observed). P. siculus occurs in hotter and drier locations than P. muralis but the ranges of the two species overlap. P. siculus has been shown to be a dominant competitor in intraspecific interactions including those with other *Podarcis* species (Capula et al., 1993; Downes & Bauwens, 2002; Herrel et al., 2008; Nevo et al., 1972), which could impact the microhabitat use of P. muralis.

Following collection of microhabitat data, we measured morphology (snout-to-vent length [SVL], total length, head length, head width, body mass) and photographed the lizards dorsally and ventrally with a Canon EOS 350D digital camera (Canon 130 U.S.A., Inc.) using an X-rite Color-Checker chart as background. We focussed on two color traits that characterize differences between the ancestral and nigriventris phenotype; dorsal greenness and ventral blackness. Intensity of the dorsal coloration ("greenness") of was scored using a scale from 1 to 10 ("1" being completely brown individuals and "10" representing the most intense green color; see While et al., 2015). This scoring is highly repeatable within and across observers and correlates well with objective spectrophotometry and with scoring from digital photographs (for data and details, see MacGregor et al., 2017; While et al., 2015). The extent of black ventral coloration ("blackness") was scored from digital photographs by quantifying the proportion of black to nonblack pixels on each lizard's chest (While et al., 2015) and thus ranged from zero to one. All individuals were then returned to the place where they were captured with the exception of 48 individuals who were returned to the Lund University for the assaying of thermal physiological traits (see below).

2.2 Statistical analysis

We first explored broad spatial variation in coloration across our 19 study populations to identify locations that were suitable to test for associations between coloration and microclimate (e.g., locations that contained individuals exhibiting the full variation in color). An initial inspection of the data revealed that, as expected based on our previous work (e.g., Miñano et al., 2021), there was a strong cline in coloration associated with a west-east increase in altitude. This resulted in individuals exhibiting predominantly the nigriventris phenotype in the west and the ancestral phenotype in the east (Figure 1c,d). Because the aim of this study was to test for associations between coloration and microhabitat variables where individuals exhibit the full range of color phenotypes, where the climatic context is similar across populations, and where individuals are as genetically similar as possible, we focused our microhabitat study on populations in the middle of this cline. This resulted in the removal of seven populations (Nazzona and Fara Sabino in the west and Rieti, Lago del Salto, Paganico, Pozzaglia Sabino, and Orvinio in the east) from the data set (Table S1). An additional population (Vicovaro) was removed from the data set because of extremely low sample size (n = 2). The removal of these populations reduced our sample size from 316 lizards from 19 populations to 233 lizards from 11 populations.

Focussing on individuals from the remaining 11 populations, we first generated estimates of microhabitat. To achieve this, we subjected four microhabitat features (percentage of vegetation, roads, bare ground, buildings) as well as canopy cover to a principal component analysis using the princomp function in r (R Core Team, 2023). Percentage water was excluded from the principal component analysis because it occurred at so few locations (<3%). We centered log-ratio transformed our percentage variables before analysis to account for the compositional nature of this data (Aitchison, 1986). The first principal component (PC1) captured the major axis of microhabitat variation, explaining 32% of the variation, and was characterized by strong positive loadings for canopy cover, vegetation, and bare ground and strong negative loading for roads and buildings (Table S2; Figure S2). The second principal (PC2) component explained an additional 30% of the variation in habitat features each and was characterized by the separation between bare ground (negative) and vegetation and canopy (positive) (Table S2; Figure S2). The third principal component (PC3) explained 24% of the variation and separated out roads (negative) and buildings (positive) (Table S2; Figure S2). The remaining two principal components explained 14% and 0% of the variation in microhabitat respectively (Table S2; Figure S2). Because PC 1, 2, and 3 represented the major axes of variation in microhabitat we retained only these for subsequent analysis.

We then used a series of general linear models to explore whether there was evidence that individuals with green and/or black coloration (characteristic of individuals with the nigriventris phenotype) occupied different microhabitats to those with brown and/or white coloration (characteristic of individuals with the ancestral

phenotype). The global model for these analyses included our first three habitat principal components outlined above, the presence of *P. siculus* (y/n)) as well as two microclimate variables (air temperature, humidity at capture) as explanatory variables. We did not include location as a random effect in these models because (a) the locations are not suitably differentiated to be classed as true populations (see Miñano et al., 2022; Yang et al., 2018) and (b) including location as a random effect resulted in poor model fit. We ran this global model separately for each sex, because of the sexual dimorphism in our target phenotypic traits (dorsal greenness, ventral blackness; See Table S3 and Figure S3 for tests of sexual dimorphism).

Due to uncertainty in model structure, we took a modelaveraging approach (Burnham & Anderson, 2004). For each model run, the explanatory variables produced a set of candidate models that were then compared using the AICc (the Akaike information criterion for small sample sizes) using the MuMIN package (Barton & Barton, 2015), with the lowest AICc value indicating the best model fit. A subset of models was generated by calculating the difference between the AICc value of the best-fitting model and all other models using a cut-off of two AICc as the criterion for inclusion in the subset. The relative importance of each variable (sum of weights) was then calculated from this model subset (Burnham & Anderson, 2004). All continuous variables were scaled (to a mean of zero and a standard deviation of 1) before being included as predictors in the models. For each model, we used the DHARMa package (Hartig, 2017) to check for deviations from model assumptions. Female blackness was log-transformed before analysis.

We repeated the above model averaging approach to test for an association between coloration and field active body temperature. Body temperature at capture was included as a dependent variable with dorsal greenness and ventral blackness as predictor variables. We also included the three habitat principal components, air temperature, humidity, and an individual's mass as covariates. While dorsal greenness and ventral blackness are correlated with one another in both males (r = 0.35, p < 0.001) and females (r = 0.50, p < 0.001), these correlations were considered sufficiently modest in this data set to allow inclusion in the same model.

2.3 | Quantification of thermal physiological traits in the laboratory

We tested for differences between color phenotypes in several thermal physiological traits including CT_{min} , preferred body temperature (T_{bpref}), resting metabolic rate, and evaporative water loss: all collected in the laboratory. For all laboratory traits, we captured individuals at the extreme ends of the distribution of coloration from the same populations as the field data outlined above (e.g., where individuals express the full range of coloration; hereafter referred to as Sabino) (n = 48). Within this population, we caught individuals that corresponded to a color score between 1 and 3 (representing individuals exhibiting the ancestral phenotype; n = 25) on the standard scale used in previous studies (While et al., 2015) and

individuals that corresponded to a color score between 8 and 10 (representing individuals exhibiting the nigriventris phenotype; n=23). In addition, we captured individuals in two locations where all individuals exhibited either the ancestral (Fagge; n=22) or nigriventris (Santa Marinella; n=23) phenotype. These "pure" and "mixed" color populations were separated by <100 km (straight line flight distance), along the pronounced phenotypic and climatic cline from the coast to 1000 masl (Miñano et al., 2021) (see Figure S1).

In the laboratory, a single male was housed with either one or two females from the same population in a single terrarium (590 mm \times 390 mm \times 415 mm). Each terrarium contained a fine layer of sand, a shelter and a basking spot with a heat lamp (from 9:00 a.m. to 4:00 p.m., 60 W). This created a thermal gradient in the terraria from approximately room temperature (max 24°C) to ~40°C. From May until August, before the lizards were tested (see below), the room lights were set to a 12 h light, 12 h dark light regime and the temperature of the room varied from 20°C (8:00 p.m. to 7:00 a.m.) to 24°C (7:00 a.m. to 8:00 p.m.). From the end of August to November (i.e., until hibernation), the room was set to 14 h light, 10 h dark light regime, and the temperature in this case varied from 15°C (6:00–8:00 p.m.) and 22°C (8:00 a.m. to 6:00 p.m.). Lizards were fed meal worms and crickets every other day and sprayed with water daily. Water was provided ad libitum.

All individuals were tested for four thermal physiological traits: CT_{min} , preferred body surface temperature (T_{bpref}), resting metabolic rate, and evaporative water loss. These traits are commonly used for assessing thermal adaptation (Angilletta, 2009; Huey & Stevenson, 1979). Full descriptions of our methodology for each of these traits is contained within the Supporting Information and we only supply brief details here. CT_{min} was quantified using the righting reflex test (Spellerberg, 1972). This test consists of placing lizards on their back at decreasing temperatures (to a minimum testing temperature of 2°C). The natural reflex is for the lizards to right themselves immediately. The temperature at which lizards are no longer able to right themselves represents an important physiological threshold. Individuals (n = 31) who could still right themselves at the lowest temperature tested (2°C) were given a CT_{min} of 1°C. T_{bpref} was quantified from thermal images taken of individuals housed in a box with a thermal gradient of between 20°C and 50°C. Resting metabolic rate was measured as consumed oxygen (VO₂) and produced carbon dioxide (VCO₂) using a FC-10 O₂ and a CA-10 CO₂ analyzer (both from Sable Systems, Las Vegas NV, USA) at 21°C, 27°C and 33°C. Produced carbon dioxide (VCO2) was used as our final measure of metabolic rate. Evaporative water loss was calculated as H₂O vapor production (VH₂O) during the metabolic rate measurement.

All assays were performed after the reproductive season, between August and November 2019. Each assay was completed over a maximum of 19 days with the order of animals trialed randomized with respect to phenotype and source location. Before each test, lizards were fasted for 24 h, but water was kept ad libitum. Lizards were weighed before and after each test. Individuals were measured with a minimum of 3 weeks between each test

 $(CT_{min},\ T_{bpref},\ resting\ metabolic\ rate)$, to ensure lizards were fully recovered between measurements.

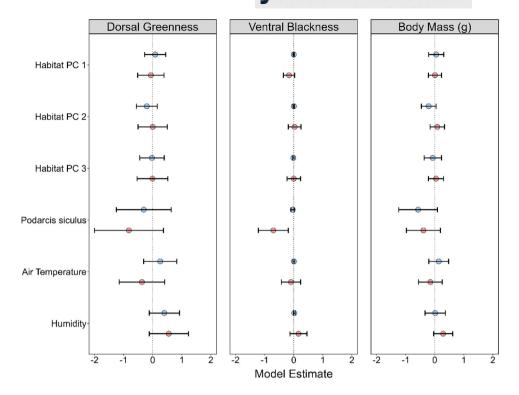
2.4 | Statistical analysis

For this part of the study, we specifically targeted individuals exhibiting the two phenotypic extremes (nigriventris vs. ancestral phenotype). As a result, these individuals exhibited extreme values for dorsal green coloration (e.g., greenness scores from 1 to 3 for lizards exhibiting the ancestral phenotype and 8–10 for individuals exhibiting the nigriventris phenotype). Furthermore, because of the tight correlation between dorsal greenness and ventral blackness observed across these two phenotypic extremes the lizards selected also differed in their ventral blackness (ancestral phenotype = $16 \pm 0.02\%$ ventral blackness vs. nigriventris phenotype = $43 \pm 0.03\%$ ventral blackness; $F_{1,84} = 62.47$, p < 0.001). This allowed us to include a single, categorical, coloration predictor in our models that captured this variation (hereafter referred to as color morph).

To analyze differences in thermal physiology between the two color morphs we ran a series of general linear mixed models (LMMs) using the Ime4 package (Bates et al., 2015) in R. Each model included a thermal physiological trait as the dependent variable with color morph (nigriventris vs. ancestral) as well as body mass and region (Sabino, Santa Marinella, Fagge) as predictor variables. For resting metabolic rate and water vapor production, we included the testing temperature (21°C, 27°C, and 33°C) and the interaction between testing temperature and color morph as additional predictor variables. We included different random effects depending on the trait of interest. This included testing box for Tb_{pref} and the experimental box in which individuals were placed and lizard ID for metabolic rate. CT_{min} was analyzed using a cox-proportional hazards model with the coxph function in R (Therneau, 2023). The response variable for these models took the form of a survival curve where "mortality" was considered as the point when an individual could no longer right itself. Color morph was included as a fixed factor along with body mass and region.

All continuous variables were scaled (to a mean of zero and a standard deviation of 1) before being included as predictors in the models. For each model, we used the DHARMa package (Hartig, 2017) to check for deviations from model assumptions. Resting metabolic rate (VCO $_2$) and water vapor production (VH $_2$ O) were log-transformed before analysis. As above, body mass was scaled before being included as a predictor in models.

3 | RESULTS


3.1 | Field microhabitat preference

There was effectively no evidence that individuals with different body coloration representative of the ancestral and nigriventris phenotypes (e.g., Dorsal Greeness and Ventral Blackness) segregated at small spatial scales with respect to any microhabitat feature (Figure 2; Tables S4–S6). For five of the six sex/trait combinations, the null model was included in the set of top-performing models (Tables S4 and S5). Across all trait and sex combinations, only the presence of *Podarcis siculus* was included in all top models (Tables S4 and S5) and exhibited a consistent direction of effect (Table S6). Specifically, the presence of *Podarcis siculus* was associated with small body size, brown dorsum, and white ventral for both sexes (Figure 2). This effect was statistically significant for male body size and female ventral blackness (Table S6; Figure 1). Humidity exhibited a statistically significant association with female body mass, with heavier females found in more humid areas (Tables S5 and S6; Figure 1). No other predictors were identified as significant of any of the three phenotypic traits for either males or females (Table S6).

The body temperature of lizards caught in the field ranged from 14°C to 38°C with an average field active temperature of 29.27 ± 0.20 °C. Air temperature at capture was the only significant predictor of an individual's field active body temperature (Tables \$7 and S8, Figure 3) with air temperature included in the bestperforming model for both males and females (Table \$7). Individuals had a higher field active temperature when caught at higher air temperatures. Dorsal greenness was included in the top-performing models for both males and females but was not identified as a significant predictor of field active body temperature in either sex (the direction of this effect was opposite for the two sexes; Figure 2). Ventral blackness was not included in the top-performing model for either males or females. Finally, there was limited evidence that field active body temperatures differed between individuals occurring in different microhabitats (Tables \$7 and \$8; Figure 3). The exception to this was that females with higher values for PC 1 (lower canopy and vegetation cover) had higher field active body temperatures than individuals with lower values for PC 1.

3.2 | Quantification of thermal physiological traits in the laboratory

Individuals exhibiting the nigriventris phenotype and those exhibiting the ancestral phenotype did not differ from one another in their CT_{min} (ancestral phenotype: 3.13 ± 0.31 °C, nigriventris phenotype: 3.34 ± 0.27 °C). This was true for both males ($\chi^2 = 0.01$, p = 0.99) and females ($\chi^2 = 0.21$, p = 0.65) (see Table S9 for full model outputs including hazard ratios). There was also no difference in CT_{min} between individuals sampled from the three different regions (males: $\chi^2 = 1.61$, p = 0.45; females $\chi^2 = 1.96$, p = 0.37). The distribution of phenotypes amongst the 31 individuals who righted themselves at the lowest temperature tested and were therefore assigned a CT_{min} of 1°C (the next lowest temperature) was slightly biased towards individuals with the ancestral phenotype (n = 19/45) compared to nigriventris phenotype (n = 12/48). However, this bias was not statistically significant (χ^2 = 2.37, df = 1, p = 0.12). The preferred body temperature (T_{bpref}) of lizards in our sample was 34.42 ± 0.12 °C. There was no difference between individuals with the nigriventris

FIGURE 2 Model-averaged parameter estimates and their confidence intervals for each predictor variable plotted against the three key phenotypic traits; dorsal greenness, ventral blackness, and body mass. Blue dots indicate estimates from male models. Red dots indicate estimates from female models. These estimates are based on conditional model averages.

phenotype and individuals with the ancestral phenotype in their preferred body temperature (Table 1; Table S10) nor was there any evidence that lizards originating from different regions had different preferred body temperatures (Tables 1 and S10).

Resting metabolic rate ($\dot{V}CO_2$), measured as mL CO_2 /min, differed significantly between temperatures tested, with individuals exhibiting higher metabolic rates at higher temperatures (Table 1; Table S11). There was no difference in resting metabolic rate between individuals exhibiting the nigriventris phenotype and those exhibiting the ancestral phenotype (Table 1; Table S11). Heavier males had a marginally higher resting metabolic rate than lighter males (Table S11). In females, individuals from the high-altitude population (Fagge) had marginally higher resting metabolic rate than individuals from either of the two lower altitude populations (Sabino and Santa Marinella) (Table 1; Table S11; Figure S8). Finally, individuals exhibiting the nigriventris phenotype did not differ from individuals exhibiting the ancestral phenotype in their water vapor production (Table 1; Table S12).

4 | DISCUSSION

The nigriventris phenotype of the common wall lizards, which is characterized by green dorsal coloration and black ventral coloration, is most exaggerated in hot and dry climates. Previous work has suggested that this is due to climate-modifying activity patterns and

hence the strength of intra-sexual selection (Minano et al., 2021). However, the melanin and carotenoid pigments that are responsible for the differences in coloration between the ancestral and nigriventris phenotype (Feiner et al., 2024) can also have pleiotropic effects which could cause indirect selection on coloration (Ducrest et al., 2008; Olson & Owens, 1998; Roulin & Ducrest, 2011; Roulin, 2016; San-Jose & Roulin, 2018; Svensson & Wong, 2011) and thereby modulate the association between climate and coloration at a landscape scale. Our results do not provide any support for this hypothesis. First, individuals exhibiting the nigriventris phenotype did not differ from individuals with the ancestral phenotype in their critical minimum temperature, preferred body temperature, resting metabolic rate, or evaporative water loss. Second, there was no evidence for a correlation between the expression of the nigriventris phenotype and active body temperature in the field, nor was there any evidence that microhabitat use differed between individuals exhibiting color traits associated with the nigriventris and ancestral phenotypes. Thus, we conclude that it is unlikely that indirect selection on coloration-via selection on thermal tolerance, preference, or temperature-dependent metabolism-plays an important role in determining the geographic distribution of the nigriventris

It is important to note that while the thermal traits targeted here are commonly used for assessing thermal adaptation in ectotherms (Angilletta, 2009; Huey & Stevenson, 1979), they are not the only traits that may correlate with color pigmentation. Therefore, we

to explaining the variation in coloration across climatic regimes (Minaño et al., 2021). The only microhabitat characteristic that exhibited any consistency in its association with phenotypic variation was the presence of P. siculus. P. siculus is more exploratory, aggressive, and consume more food when in direct competition with other Podarcis species (Damas-Moreira et al., 2019, 2020). In extreme cases, this can result in the exclusion of other species from particular habitats (e.g., Capula et al., 1993; Downes & Bauwens, 2002; Herrel et al., 2008, Nevo et al., 1972). Such effects, if manifested in the context of P. muralis, may distort associations between phenotype and microhabitat. While the results were relatively weak overall, one interpretation is that individuals exhibiting the nigriventris phenotype (e.g., large greenand-black individuals) are less likely to co-occur with P. siculus because they are perceived as a greater threat to P. siculus individuals, compared to individuals exhibiting the ancestral phenotype that therefore are tolerated. Such patterns of competitive exclusion are common within species (e.g., Edsman, 1990; MacGregor et al., 2017). How interspecific competition contributes to selection on color ornamentation and influences the distribution of the two species on local and regional scales, deserves further study.

It is noteworthy that the laboratory measures of critical minimum temperature, preferred body temperature, and evaporative water loss did not reveal any differences between lizards from different altitudes (from 40 masl in coastal Santa Marinella to 1000 masl in inland Fagge). While our study was not designed to test for local adaptation per se, this finding is surprising, given that lizards from these regions experience quite drastic differences in climate. Indeed, we have previously shown signatures of genetic differentiation associated with climatic regimes across this geographic region, including candidate

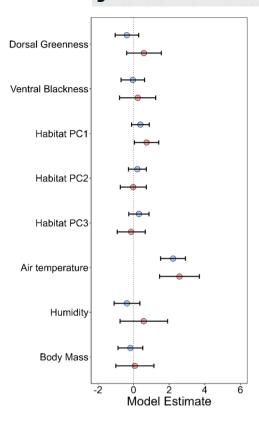


FIGURE 3 Model-averaged parameter estimates and their confidence intervals for each predictor variable plotted against field active body temperature. Blue dots indicate estimates from male models. Red dots indicate estimates from female models. These estimates are based on conditional model averages.

cannot exclude the possibility that other traits related to thermal physiology or thermoregulatory behavior may play a role. For example, coloration, in particular melanism, can affect heating rate, which is important for ectotherms that inhabit cool climates (Forsman, 1995; Walton & Bennett, 1993; White et al., 2002). While the nigriventris phenotype (which is characterized by increase melanism on the ventral surface) is strongly associated with hot, rather than cool, climate, such effects could still mediate the strength of the overall association between climate and coloration. Additionally, coloration may be mechanistically linked to traits that are not related to thermal physiology per se but whose effects on fitness are themselves temperature dependent—for example, stress tolerance, aggression, or sexual receptivity (Ducrest et al., 2008). If this is the case, color ornamentation may still be selected against in cool climates because of, for example, physiological costs associated with aggression. Therefore, while our results do not support an intrinsic link between coloration and thermal biology, additional work is still required to completely rule out the possibility that pleiotropic effects of genes involved in coloration do not contribute to weak or negative net selection on coloration in cool climates.

Our field study helped to evaluate the utility of laboratory assays in assessing the importance of thermal physiological trait variation in explaining geographic variation in coloration. Wall lizards typically

Post hoc comparison of mean estimates for color morph (ancestral vs. nigriventus), region (Fagge [high]; Sabino [intermediate]; Santa Marinella [low]), and incubation treatment (21°C, 27°C, and 33°C) factors.

Response	Sex	Color morph	Estimate (95% CI)	Region	Estimate (95% CI)	Temp	Estimate (95% CI)
Preferred body temperature	Males	Nigriventris	34.7 (33.8-35.2)	Fagge (H)	34.3 (33.5-35.1)		
		Ancestral	34.5 (34.0-35.5)	Sabino (M)	34.5 (33.9-35.1)		
				Santa Marinella (L)	35.0 (34.1-35.9)		
	Females	Nigriventris	34.7 (33.7-35.7)	Fagge (H)	34.1 (33.0-35.1)		
		Ancestral	34.1 (33.2-35.1)	Sabino (M)	34.2 (33.2-35.1)		
				Santa Marinella (L)	35.0 (33.9-36.1)		
Metabolic rate (VCO ₂)	Males	Nigriventris	0.012 (0.010-0.015)	Fagge (H)	0.012 (0.009-0.015)	21°C	0.006 (0.005-0.007)a
		Ancestral	0.010 (0.008-0.012)	Sabino (M)	0.011 (0.009-0.012)	27°C	0.011 (0.010-0.013)b
				Santa Marinella (L)	0.011 (0.008-0.015)	33°C	0.020 (0.017-0.022)c
	Females	Nigriventris	0.009 (0.008-0.010)	Fagge (H)	0.012 (0.010-0.015)a	21°C	0.005 (0.005-0.006)a
		Ancestral	0.010 (0.009-0.012)	Sabino (M)	0.009 (0.008-0.010)b	27°C	0.010 (0.009-0.011)b
				Santa Marinella (L)	0.008 (0.007-0.010)b	33°C	0.016 (0.015-0.018)c
Evaporative water loss (VH ₂ O)	Males	Nigriventris	164.02 (122.73-217.02)	Fagge (H)	172.43 (127.74-232.76)	21°C	127.74 (109.94-148.41)a
		Ancestral	194.41 (151.41-249.63)	Sabino (M)	196.37 (164.02-235.09)	27°C	165.67 (142.59-192.48)b
				Santa Marinella (L)	167.35 (115.58-244.69)	33°C	207.42 (232.76-314.19)c
	Females	Nigriventris	160.77 (138.38-186.79)	Fagge (H)	151.41 (123.96-184.93)	21°C	113.29 (103.54-122.73)a
		Ancestral	162.39 (139.77-186.79)	Sabino (M)	169.02 (149.90-188.67)	27°C	157.59 (144.02-172.43)b
				Santa Marinella (L)	164.02 (134.29-198.34)	33°C	235.10 (214.86-254.68)c

Note: Bolded estimates indicated estimates for which there were significant differences. Letters indicate significant differences among groups (a > b > c). Estimates for variables that were log-transformed before analysis (e.g., metabolic rate, evaporative water loss) have been back-transformed. Abbreviation: CI, confidence interval.

genes that have previously been shown to be involved in both thermal physiology and coloration (Miñano et al., 2022). There is also direct evidence for local adaptation in terms of embryonic development. Specifically, embryos from high-altitude regions use less energy to complete development, that is, they develop faster without a concomitant increase in metabolic rate, compared with those from the low-altitude region (Pettersen, Ruuskanen, et al., 2023). Despite this, it was only resting metabolic rate in (female) lizards that differed between the highaltitude and low or intermediate sites, independent of coloration. While the effect size was relatively small (Figure S8), the higher resting metabolic rate in lizards from high altitudes could facilitate activity at cold temperatures and is in the direction predicted if there would be local adaptation (see also Plasman et al., 2020; Seebacher, 2005; White et al., 2012). In contrast, there were no differences in preferred body temperature or critical temperature minimum between regions. The latter is particularly noteworthy, as CT_{min} has been suggested to evolve rapidly, often being the first aspect of thermoregulation to become locally adapted following exposure to cool conditions (see Bodensteiner

et al., 2021 for a review). For example, in Lampropholis lizards, critical thermal minimum is associated with increases in elevational gradients (Anderson et al., 2023). There are two caveats, however. First, CT_{min} has been shown to be highly dependent on acclimation times (e.g., Pintor et al., 2016), which can make it difficult to detect differences between groups of animals kept for several months in the laboratory. Second, a third of our individuals could still right themselves at the lowest temperature tested (2°C) which limited our ability to quantify the true CT_{min} of a subset of our population which may have restricted our ability to tease apart relatively subtle differences between regions (and/or phenotypes). Evidence for intraspecific variation in preferred body temperature is more mixed with some studies showing strong geographic clines in thermal preference (Rozen-Rechels et al., 2019) while others suggest thermal preferences are more rigid (Chabaud et al., 2022; Pettersen, Feiner, et al., 2023).

In summary, our results suggest limited, if any, differences in thermal physiological traits between common wall lizards with different coloration. This result holds for both males and females. We conclude

that antagonistic pleiotropy between coloration and thermal biology produces, at best, a modest impact on the distribution of the green and black coloration on local and regional spatial scales. Therefore, the prevailing evidence supports climatic influences on sexual selection (Miñano et al., 2021) as the primary explanation for the remarkable diversity in wall lizard body coloration across the Italian landscape.

AUTHOR CONTRIBUTIONS

Maravillas Ruiz Miñano, Tobias Uller, and Geoffrey M. While designed and coordinated the study. Maravillas Ruiz Miñano, Tobias Uller, Amanda K. Pettersen, Luisa J. Fitzpatrick, and Geoffrey M. While performed fieldwork and collected samples. Maravillas Ruiz Miñano and Andreas Nord performed laboratory work. Maravillas Ruiz Miñano, Tobias Uller, and Geoffrey M. While analyzed the data. Maravillas Ruiz Miñano, Tobias Uller, Andreas Nord, and Geoffrey M. While interpreted the results. Maravillas Ruiz Miñano, Tobias Uller, and Geoffrey M. While wrote the manuscript with comments from, and final version approved by, all authors.

ACKNOWLEDGMENTS

The authors are grateful to Roberto Sacchi and Marco Zuffi for logistic support, Nathalie Feiner for field assistance, and Leah Burgess for generating the microhabitat data from Google Earth. The authors are grateful to Dan Warner and two anonymous reviewers for constructive comments on previous versions of the manuscript. The Ministry of Education, University and Research (MIUR) provided all the authorizations for the study. 2012-2013: Aut. Prot. PNM-0009344: 2014-2015: Aut. Prot. PNM-0011379; 2016-2018: Aut. Prot. PNM-0002154. This study was supported by the Swedish Research Council (2014-04465 and 2017-03846, both to T. U.). Tobias Uller was supported by a Wallenberg Academy Fellowship from the Knut and Alice Wallenberg Foundations. Andreas Nord was supported by the Swedish Research Council (2023-04686). Maravillas Ruiz Miñano was supported by a Tasmania Graduate Research Scholarship. Open access funding provided by the University of Tasmania. Open access publishing facilitated by University of Tasmania, as part of the Wiley - University of Tasmania agreement via the Council of Australian University Librarians.

DATA AVAILABILITY STATEMENT

The data and code used in this study are available on Zenodo (https://doi.org/10.5281/zenodo.12896800; Miñano et al. 2024).

ORCID

Maravillas Ruiz Miñano https://orcid.org/0000-0001-5491-0200

Tobias Uller https://orcid.org/0000-0003-1293-5842

Amanda K. Pettersen https://orcid.org/0000-0001-6191-6563

Andreas Nord https://orcid.org/0000-0001-6170-689X

Luisa J. Fitzpatrick https://orcid.org/0000-0003-3390-2070

Geoffrey M. While http://orcid.org/0000-0001-8122-9322

REFERENCES

Abalos, J., Pérez i de Lanuza, G., Bartolomé, A., Liehrmann, O., Laakkonen, H., Aubret, F., Uller, T., Carazo, P., & Font, E. (2020).

- No evidence for differential sociosexual behavior and space use in the color morphs of the European common wall lizard (*Podarcis muralis*). *Ecology and Evolution*, 10(20), 10986–11005.
- Adolph, S. C. (1990). Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. *Ecology*, 71(1), 315–327.
- Aitchison, J. (1986). The statistical analysis of compositional data. Chapman & Hall.
- Anderson, R. O., Alton, L. A., White, C. R., & Chapple, D. G. (2022). Ecophysiology of a small ectotherm tracks environmental variation along an elevational cline. *Journal of Biogeography*, 49(2), 405–415.
- Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press.
- Barton, K., & Barton, M. K. (2015). *Package 'MuMIn'*. Version, 1, 18. https://cran.r-project.org/web/packages/MuMIn/
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixedeffects models using Ime4. *Journal of Statistical Software*, 67(1), 1–48
- Baudier, K. M., Mudd, A. E., Erickson, S. C., & O'Donnell, S. (2015). Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). *Journal of Animal Ecology*, 84(5), 1322–1330.
- Bauwens, D., Hertz, P. E., & Castilla, A. M. (1996). Thermoregulation in a lacertid lizard: The relative contributions of distinct behavioral mechanisms. *Ecology*, 77(6), 1818–1830.
- Bodensteiner, B. L., Agudelo-Cantero, G. A., Arietta, A. Z. A., Gunderson, A. R., Muñoz, M. M., Refsnider, J. M., & Gangloff, E. J. (2021). Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? *Journal of Experimental Zoology Part A: Ecological and Integrative Physiology*, 335(1), 173–194.
- Bohme, W. (1986). Podarcis muralis (Laurenti, 1768)—Mauereidechse. In K. Grossenbacher (Ed.), *Handbuch der Reptilien und Amphibien Europas* (Vol. 2, pp. 155–208). Aula Verlag.
- Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. *Sociological Methods & Research*, 33(2), 261–304.
- Caldwell, A. J., While, G. M., & Wapstra, E. (2017). Plasticity of thermoregulatory behaviour in response to the thermal environment by widespread and alpine reptile species. *Animal Behaviour*, 132, 217–227.
- Candolin, U. (1999). Male-male competition facilitates female choice in sticklebacks. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 266(1421), 785–789.
- Capula, M., Luiselli, L., & Rugiero, L. (1993). Comparative ecology in sympatric Podarcis muralis and P. sicula (Reptilia: Lacertidae) from the historical centre of Rome: What about competition and niche segregation in an urban habitat? *Italian Journal of Zoology*, 60(3), 287-291.
- Chabaud, C., Berroneau, M., Berroneau, M., Dupoué, A., Guillon, M., Viton, R., Gavira, R. S. B., Clobert, J., Lourdais, O., & Le Galliard, J.-F. (2022). Climate aridity and habitat drive geographical variation in morphology and thermo-hydroregulation strategies of a widespread lizard species. *Biological Journal of the Linnean Society*, 137(4), 667-685.
- Chen, I. P., Symonds, M. R. E., Melville, J., & Stuart-Fox, D. (2013). Factors shaping the evolution of colour patterns in Australian agamid lizards (Agamidae): A comparative study: Evolution of colour patterns. Biological Journal of the Linnean Society, 109(1), 101–112.
- Clusella Trullas, S., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. *Journal of Thermal Biology*, 32(5), 235-245.
- Cole, G. L., & Endler, J. A. (2015). Variable environmental effects on a multicomponent sexually selected trait. The American Naturalist, 185(4), 452–468.
- Dale, J., Dey, C. J., Delhey, K., Kempenaers, B., & Valcu, M. (2015). The effects of life history and sexual selection on male and female plumage colouration. *Nature*, 527(7578), 367–370.

- Damas-Moreira, I., Riley, J. L., Harris, D. J., & Whiting, M. J. (2019). Can behaviour explain invasion success? A comparison between sympatric invasive and native lizards. Animal Behaviour, 151, 195-202.
- Damas-Moreira, I., Riley, J. L., Carretero, M. A., Harris, D. J., & Whiting, M. J. (2020). Getting ahead: Exploitative competition by an invasive lizard. Behavioral Ecology and Sociobiology, 74(10), 117.
- Doutrelant, C., Paquet, M., Renoult, J. P., Grégoire, A., Crochet, P. A., & Covas, R. (2016). Worldwide patterns of bird colouration on islands. Ecology Letters, 19(5), 537-545.
- Downes, S., & Bauwens, D. (2002). Does reproductive state affect a lizard's behavior toward predator chemical cues? Behavioral Ecology and Sociobiology, 52(6), 444-450.
- Ducrest, A., Keller, L., & Roulin, A. (2008). Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends in Ecology & Evolution, 23, 502-510.
- Edelaar, P., Siepielski, A. M., & Clobert, J. (2008). Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. Evolution, 62(10), 2462-2472.
- Edsman, L. (1990). Terrotirality and competition in Wall Lizards. [PhD thesis, Stockholm University].
- Edsman, L. (1986). Territoriality and resource defence in Wall Lizard (Podarcis muralis). In Z. Rocek (Ed.), Studies in herpetology (pp. 601-604). Prague.
- Ellers, J., & Boggs, C. L. (2003). The evolution of wing color: Male mate choice opposes adaptive wing color divergence in Colias butterflies. Evolution, 57(5), 1100-1106.
- Endler, J. A. (1983). Natural and sexual selection on color patterns in poeciliid fishes. Environmental Biology of Fishes, 9(2), 173-190.
- Feiner, N., Yang, W., Bunikis, I., While, G. M., & Uller, T. (2024). Adaptive introgression reveals the genetic basis of a sexually selected syndrome in wall lizards. Science Advances, 10, eadk9315.
- Fitzpatrick, S. W. (1994). Colourful migratory birds: Evidence for a mechanism other than parasite resistance for the maintenance of "good genes" sexual selection. Proceedings of the Royal Society of London. Series B: Biological Sciences, 257(1349), 155-160.
- Forsman, A. (1995). Heating rates and body temperature variation in melanistic and zigzag Vipera berus: Does colour make a difference? Annales Zoologici Fennici, 32, 365-374.
- García-Roa, R., Garcia-Gonzalez, F., Noble, D. W. A., & Carazo, P. (2020). Temperature as a modulator of sexual selection. Biological Reviews, 95, 1607-1629.
- Grant, B. W. (1990). Trade-offs in activity time and physiological performance for thermoregulating desert lizards, Sceloporus merriami. Ecology, 71(6), 2323-2333.
- Hartig, F. (2017). DHARMa: Residual diagnostics for hierarchical (multi-level/ mixed) regression models. R package, version 0.1.5. https://cran.rproject.org/web/packages/DHARMa/
- Heathcote, R. J. P., While, G. M., Macgregor, H. E. A., Sciberras, J., Leroy, C., D'Ettorre, P., & Uller, T. (2016). Male behaviour drives assortative reproduction during the initial stage of secondary contact. Journal of Evolutionary Biology, 29(5), 1003-1015.
- Hegna, R. H., Nokelainen, O., Hegna, J. R., & Mappes, J. (2013). To quiver or to shiver: Increased melanization benefits thermoregulation, but reduces warning signal efficacy in the wood tiger moth. Proceedings of the Royal Society B: Biological Sciences, 280(1755), 20122812.
- Herrel, A., Huyghe, K., Vanhooydonck, B., Backeljau, T., Breugelmans, K., Grbac, I., Van Damme, R., & Irschick, D. J. (2008). Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proceedings of the National Academy of Sciences of the United States of America, 105(12), 4792-4795.
- Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. American Zoologist, 19(1), 357-366.
- Jiang, G., Song, J., Hu, H., Tong, X., & Dai, F. (2020). Evaluation of the silkworm lemon mutant as an invertebrate animal model for human

- sepiapterin reductase deficiency. Royal Society Open Science, 7, 191888
- Johnson, J. D., & Hill, G. E. (2013). Is carotenoid ornamentation linked to the inner mitochondria membrane potential? A hypothesis for the maintenance of signal honesty. Biochimie, 95(2), 436-444.
- Kearney, M., & Porter, W. P. (2004). Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology, 85(11), 3119-3131.
- Kraemer, A. C., Philip, C. W., Rankin, A. M., & Parent, C. E. (2019). Tradeoffs direct the evolution of coloration in Galápagos land snails. Proceedings of the Royal Society B: Biological Sciences, 286(1894), 20182278.
- Longo, N. (2009). Disorders of biopterin metabolism. Journal of Inherited Metabolic Disease, 32, 333-342.
- MacGregor, H. E. A., While, G. M., Barrett, J., Pérez i de Lanuza, G., Carazo, P., Michaelides, S., & Uller, T. (2017). Experimental contact zones reveal causes and targets of sexual selection in hybridizing lizards. Functional Ecology, 31(3), 742-752.
- Miñano, M. R., While, G. M., Yang, W., Burridge, C. P., Sacchi, R., Zuffi, M., Scali, S., Salvi, D., & Uller, T. (2021). Climate shapes the geographic distribution and introgressive spread of color ornamentation in common wall lizards. The American Naturalist, 198(3), 379-393.
- Miñano, M. R., Uller, T., Pettersen, A. K., Nord, A., Fitzpatrick, L. J., & While, G. M. (2024). Data from: Sexual color ornamentation, microhabitat choice, and thermal physiology in the common wall lizard (Podarcis muralis) [Data set]. Journal of Experimental Zoology A. https://doi.org/10.5281/zenodo.12896800
- Miñano, M., While, G. M., Yang, W., Burridge, C. P., Salvi, D., & Uller, T. (2022). Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity, 128, 271-278.
- Moen, D. S., & Wiens, J. J. (2017). Microhabitat and climatic niche change explain patterns of diversification among frog families. The American Naturalist, 190(1), 29-44.
- Moore, M. P., Lis, C., Gherghel, I., & Martin, R. A. (2019). Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecology Letters, 22(3), 437-446.
- Moss, J. B., Borthwick, Z., Wapstra, E., & While, G. M. (2023). Thermal plasticity in behavioral traits mediates mating and reproductive dynamics in an ectotherm. The American Naturalist, 201(6), 851-863.
- Nevo, E., Gorman, G., Soulé, M., Yang, S. Y., Clover, R., & Jovanović, V. (1972). Competitive exclusion between insular Lacerta species (Sauria, Lacertidae): Notes on experimental introductions. Oecologia, 10, 183-190.
- Olson, V. A., & Owens, I. P. F. (1998). Costly sexual signals: Are carotenoids rare, risky or required. Trends in Ecology & Evolution, 13(12), 510-514.
- Olsson, M., Schwartz, T., Wapstra, E., Uller, T., Ujvari, B., Madsen, T., & Shine, R. (2011). Climate change, multiple paternity and offspring survival in lizards. Evolution, 65(11), 3323-3326.
- Olsson, M., Wapstra, E., Schwartz, T., Madsen, T., Ujvari, B., & Uller, T. (2011). In hot pursuit: Fluctuating mating system and sexual selection in sand lizards. Evolution, 65(2), 574-583.
- Pérez i de Lanuza, G., Font, E., & Monterde, J. L. (2013). Using visual modelling to study the evolution of lizard coloration: Sexual selection drives the evolution of sexual dichromatism in lacertids. Journal of Evolutionary Biology, 26(8), 1826-1835.
- Pérez i Lanuza, G., & Carretero, M. A. (2018). Partial divergence in microhabitat use suggests environmental-dependent selection on a colour polymorphic lizard. Behavioral Ecology and Sociobiology, 72(28), 1-7.
- Pettersen, A. K., Feiner, N., Noble, D. W. A., While, G. M., Cornwallis, C. K., & Uller, T. (2023). Maternal behavioral thermoregulation facilitated evolutionary transitions from egg laying to live birth. Evolution Letters, 7(5), 351-360.
- Pettersen, A. K., Ruuskanen, S., Nord, A., Nilsson, J. F., Miñano, M. R., Fitzpatrick, L. J., While, G. M., & Uller, T. (2023). Population

2471.5646, 2024, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jez.2859, Wiley Online Library on [08/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- divergence in maternal investment and embryo energy use and allocation suggests adaptive responses to cool climates. Journal of Animal Ecology, 92(9), 1771–1785.
- Pintor, A. F. V., Schwarzkopf, L., & Krockenberger, A. K. (2016). Extensive acclimation in ectotherms conceals interspecific variation in thermal tolerance limits. PLoS One, 11(3), e0150408.
- Plasman, M., Bautista, A., McCue, M. D., & Díaz de la Vega-Pérez, A. H. (2020). Resting metabolic rates increase with elevation in a mountain-dwelling lizard. Integrative Zoology, 15(5), 363-374.
- Powers, M. J., & Hill, G. E. (2021). A review and assessment of the sharedpathway hypothesis for the maintenance of signal honesty in red ketocarotenoid-based coloration. Integrative and Comparative Biology, 61(5), 1811-1826.
- R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Roulin, A. (2016). Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biological Reviews, 91(2), 328-348.
- Roulin, A., & Ducrest, A. L. (2011). Association between melanism, physiology and behaviour: A role for the melanocortin system. European Journal of Pharmacology, 660, 226-233.
- Rozen-Rechels, D., Dupoué, A., Lourdais, O., Chamaillé-Jammes, S., Meylan, S., Clobert, J., & Le Galliard, J. F. (2019). When water interacts with temperature: Ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecology and Evolution, 9(17), 10029-10043.
- Runemark, A., Hansson, B., Pafilis, P., Valakos, E. D., & Svensson, E. I. (2010). Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: A combined role for local selection and genetic drift on color morph frequency divergence? BMC Evolutionary Biology, 10(1), 269.
- Ruxton, G. D., Allen, W. L., Sherratt, T. N., & Speed, M. P. (2019). Avoiding attack: The evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press.
- San-Jose, L. M., & Roulin, A. (2018). Toward understanding the repeated occurrence of associations between melanin-based coloration and multiple phenotypes. The American Naturalist, 192(2), 111-130.
- Scheffers, B. R., Phillips, B. L., Laurance, W. F., Sodhi, N. S., Diesmos, A., & Williams, S. E. (2013). Increasing arboreality with altitude: A novel biogeographic dimension. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20131581.
- Seebacher, F. (2005). A review of thermoregulation and physiological performance in reptiles: What is the role of phenotypic flexibility? Journal of Comparative Physiology B, 175, 453-461.
- Shultz, A. J., & Burns, K. J. (2017). The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae). Evolution, 71(4), 1061-1074.
- Spellerberg, I. F. (1972). Temperature tolerances of Southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia, 9(1), 23-46.
- Stelbrink, P., Pinkert, S., Brunzel, S., Kerr, J., Wheat, C. W., Brandl, R., & Zeuss, D. (2019). Colour lightness of butterfly assemblages across North America and Europe. Scientific Reports, 9(1), 1760.
- Stuart-Fox, D., Newton, E., & Clusella-Trullas, S. (2017). Thermal consequences of colour and near-infrared reflectance. Philosophical

- Transactions of the Royal Society, B: Biological Sciences, 372(1724), 20160345
- Sun, B.-J., Li, W.-M., Lv, P., Wen, G.-N., Wu, D.-Y., Tao, S.-A., Liao, M.-L., Yu, C.-Q., Jiang, Z. W., Wang, Y., Xie, H.-X., Wang, X.-F., Chen, Z.-Q., Liu, F., & Du, W.-G. (2024). Genetically encoded lizard color divergence for camouflage and thermoregulation. Molecular Biology and Evolution, 41(2), msae009.
- Surai, P. F. (2002). Natural antioxidants in avian nutrition and reproduction. Nottingham University Press.
- Svensson, A., & Wong, A. (2011). Carotenoid-based signals in behavioural ecology: A review. Behaviour, 148(2), 131-189.
- Therneau, T. (2023). A package for survival analysis in R. R package version 3.5-7. https://cran.r-project.org/web/packages/survival/index.html
- Wallace, A. R. (1877). The colors of animals and plants. The American Naturalist, 11(11), 641-662.
- Walton, B. M., & Bennett, A. F. (1993). Temperature-dependent color change in Kenyan chameleons. Physiological Zoology, 66(2), 270-287.
- While, G. M., Michaelides, S., Heathcote, R. J. P., MacGregor, H. E. A., Zajac, N., Beninde, J., Carazo, P., Pérez i de Lanuza, G., de Lanuza I., Sacchi, R., Zuffi, M. A. L., Horváthová, T., Fresnillo, B., Schulte, U., Veith, M., Hochkirch, A., & Uller, T. (2015). Sexual selection drives asymmetric introgression in wall lizards. Ecology Letters, 18(12), 1366-1375.
- White, A. M., Powell, R., & Censky, E. J. (2002). On the thermal biology of Ameiva (Teiidae) from the Anguilla Bank West Indies: Does melanism matter? Amphibia-Reptilia, 23(4), 517-523.
- White, C. R., Alton, L. A., & Frappell, P. B. (2012). Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proceedings of the Royal Society B: Biological Sciences, 279, 1740-1747.
- Yang, W., While, G. M., Laakkonen, H., Sacchi, R., Zuffi, M. A. L., Scali, S., Salvi, D., & Uller, T. (2018). Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Molecular Ecology, 27, 4213-4224.
- Yang, W., Feiner, N., Laakkonen, H., Sacchi, R., Zuffi, M. A. L., Scali, S., While, G. M., & Uller, T. (2020). Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution, 74, 1289-1300.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Ruiz Miñano, M. R., Uller, T., Pettersen, A. K., Nord, A., Fitzpatrick, L. J., & While, G. M. (2024). Sexual color ornamentation, microhabitat choice, and thermal physiology in the common wall lizard (Podarcis muralis). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 341, 1041-1052. https://doi.org/10.1002/jez.2859