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Abstract
Six species belonging to the genus Lacerta live in Türkiye. In this study, both present and future potential distribution maps 
were created based on occurrence data and climatic variables for these six species. Two scenarios for future projections 
(shared socioeconomic pathways, SSPs,: 245 and 585) and two timeframes (2041–2060 and 2081–2100) were used. The 
present and future potential distributions of these species were compared. As a result, it was predicted that the distribution 
ranges in the six species will expand in the future, and this expansion has revealed new environments.
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Introduction

Due to the dramatically changing climate, biodiversity on 
a global scale is under threat (Araújo and Rahbek 2006). 
Some organisms track shifts in morphology and behavior 
related to dispersal or migration due to preferred micro-
climates, and some may physiologically tolerate changing 
conditions (Sears and Angilletta 2011). In fact, the distribu-
tion, behavior, physiology, and phenology of most animal 
and plant species can shift significantly due to changing 
climate. Moreover, many species that cannot adapt to these 

changes may show a tendency for local extinction (Pereira 
et al. 2010; Vaissi 2022). In the case of cold-blooded living 
things, especially lizards living in temperate zones like Tür-
kiye, they are considered to be quite vulnerable to climate 
change (Moreno-Rueda et al. 2012).

Ecological niche modeling (ENM) is a powerful tool 
to interpret the spatial patterns and shifts in the distribu-
tion of organisms in past, present, and future in changing 
climates (Peterson et al. 2011), and is an empirical and 
quantitative model of the relationship between species 
and the environment usually using species occurrence 
data and the environmental variables considered to affect 
species distribution (Elith and Franklin 2013). Now, there 
are many types of ENM software available. For instance, 
MAXENT (Phillips et al. 2006), the java software based 
on maximum entropy algorithm, GARP (Stockwell and 
Peters 1999) that studies with presence-absence data, 
and GLM (Guisan et al. 2002) that studies with graphi-
cal user interface (GUI) software, are some of them. 
Also, the R language provides most packages: DOMAIN 
(Carpenter et al. 1993), BIOMOD (Thuiller et al. 2009), 
and BIOCLIM (Booth et al. 2014) that provide presence-
only modelling algorithms and integrate several model-
ling tools. In addition, random forest (Breiman 2001) 
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that provides several ensemble forecasting models is 
a package within the R software (Sillero et al. 2023). 
Recently, a modular platform called “Wallace” for ENM 
applications in ecology and the environmental sciences 
was developed by Kass et al. (2018). “Wallace,” which is 
flexible, highly interactive, and user-friendly, is an open 
and modular application with a richly documented graphi-
cal user interface with underlying R scripts. “Wallace” 
provides an integrated ENM from model evaluation to 
visualization (Kass et al. 2018, 2023). Also, it enables 
the modeling and simulations using bioclimatic layers to 
assess the effect of changes in climate on the distribution 
of species (Kass et al. 2018, 2023).

The genus Lacerta linnaeus 1758 a member of the 
family Lacertidae known as true lacertid lizards, consists 
of ten species; some of which are endemic (L. citrovit-
tata Werner 1938, L. pamphylica Schmidtler 1975, and 
L. schreiberi Bedriaga 1878), and the geographic distri-
bution of the genus Lacerta covers widely the Palearctic 
region, including Europe, Central Asia, and the Middle 

East (Arnold et al. 2007; Ahmadzadeh et al. 2013; Kornil-
ios et al. 2020). Six species of the genus Lacerta live in 
Türkiye, e.g., Lacerta agilis (Linnaeus 1758), L. viridis 
(Laurenti 1768), L. strigata (Eichwald 1831), L. media 
(Lantz and Cyren 1920), L. diplochondrodes (Wettstein 

Fig. 1  Distribution patterns and occurrence records of species of the genus Lacerta in Türkiye

Table 1  The models calculate the results of Wallace package. FC, 
feature classes (H, hinge; L, linear; Q, quadratic; P, product); RM, 
regularization multiplier; delta. AICc and AICc: Akaike information 
criterion corrected

Species FC RM Auc. train AICc Delta AICc

L. agilis L 1 0.8025 152.227 0
L. diplochondrodes H 2.5 0.6868 1010.086 0
L. viridis LQHP 3 0.7923 1033.189 0
L. media LQHP 2 0.7910 1428.512 0
L. pamphylica LQH 2.5 0.6769 104.6954 0
L. strigata LQHP 3.5 0.7284 76.47181 0
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1952), and L. pamphylica (Schmidtler 1975). The distribu-
tion of L. agilis reaches Kars, Ardahan, Erzurum, Trabzon, 
Rize, and Artvin provinces in Türkiye. On the other hand, 
L. diplochondrod is across western, northwestern, and cen-
tral Anatolia, as well the southeastern coast of Türkiye. 
In contrast, L. media shows its distribution in a major part 
of central Anatolia, and northeastern, southeastern, and 
eastern Anatolia. L. pamphylica is an Anatolian endemic 
species that is restricted to the south slope of the Toros 

Mountains in the Mediterranean region. Although L. stri-
gata indicates the limited distribution around the mountain 
of Ağrı in Iğdır provinces, it is an not endemic species. 
As for L. viridis, its distribution ranges across the Black 
Sea coast from Giresun province to the Trachea region 
(Baran et al. 2021). We chose these species because (1) 
their movements are restricted, (2) some species have large 
distribution and some have narrow distribution, and (3) 
they are vulnerable to climate change.

Fig. 2  Potential distribution of L. agilis under both current and future climatic scenarios in Türkiye. The warm colors indicate the most suitable 
areas



 Environmental Science and Pollution Research

1 3

Here, we evaluate the potential effects of changes 
in climate on species of the genus Lacerta in Türkiye 
using ENM. For this, we project a global climate model 
and two representative concentration pathways. Thus, 
for the first time, the potential distribution patterns of 
species belonging to the genus Lacerta across Türkiye 
due to the changing climate are revealed. It is expected 
that the results will be used in conservation activities 
on local scale.

Material and methods

Species occurrence data

The species studied have different conservation sta-
tus, and according to the Red List (IUCN 2023), many 
of these species are least concern category (L. agilis, 
L. viridis, L. media, and L. pamphylica), but L. diplo-
chondrodes species does not have conservation status 

Fig. 3  Potential distribution of L. diplochondrodes under both current and future climatic scenarios in Türkiye. The warm colors indicate the 
most suitable areas
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yet. Occurrence data were collected from the fieldwork 
between years 2005 and 2015 (Fig. 1, Supplementary 
materials Table  S1). To reduce the effects of biased 
sampling, 1 km was used as thinning distance. Total 
sampling records were used: 18, 65, 74, and 87 for L. 
agilis, L. diplochondrodes, L. viridis, and L. media, 
respectively. However, the thinning was not done for 
small sampling records, and 8 and 3 records were used 
for L. pamphylica and L. strigata, respectively (Hernan-
dez et al. 2006).

Climatic variables

Bioclimatic variables were downloaded from World-
Climv2.1 (Fick and Hijmans 2017) at a spatial resolution 
of 2.5 min. These nineteen variables cover the average 
for the years 1970–2000. First, these nineteen variables 
were masked for Türkiye using the “spatial analyst” 
feature in ArcGIS v10.4.1; then, the variables with a 
correlation of higher than 0.75 (Vaissi 2021a,b) were 
removed using SDM toolbox v2.5 (Brown et al. 2017) 

Fig. 4  Potential distribution of L. media under both current and future climatic scenarios in Türkiye. The warm colors indicate the most suitable 
areas
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(Supplementary materials Fig. S1). Finally, eight vari-
ables remained and were used to run all analyses: annual 
mean temperature (bio1), mean diurnal range (mean of 
monthly max temp-min temp) (bio2), isothermality (bio2/
bio7) (× 100) (bio3), temperature seasonality (standard 
deviation × 100) (bio4), mean temperature of wettest 
quarter (bio8), annual precipitation (bio12), precipita-
tion of driest month (bio14), and precipitation seasonality 
(coefficient of variation) (bio15). For future projections, 
the CMIP6 climate projections from one global climate 
model (GCMs) (BCC-CSM2-MR), which is a strong 
predictor of both temperature and precipitation variables 

in Asia for two shared socioeconomic pathways (SSPs), 
were downloaded in the GeoTIFF format. SSP245 path-
way is a projection to rise by 2°C in 2041–206 and 2.7 C 
in 2081–2100. On the contrary, SSP585 is a projection 
that predicts to rise between 2.4 and 4.4°C (IPCC 2021). 
These pathways were used for all future analyses.

Model calibration

A study region for each species has been delimited in 
the extent buffered by 0.01° using a minimum convex 
polygon. Thus, environmental data were masked within 

Fig. 5  Potential distribution of L. pamphylica under both current and future climatic scenarios in Türkiye. The warm colors indicate the most 
suitable areas
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the region, and random background points were sampled 
(n = 10,000). As small data sets from < 25, we chose the 
n − 1 jackknife method of k-fold cross-validation that 
each of n occurrence localities is used for testing once, 
whereas all others are used for training in that iteration 
(Pearson et al. 2007; Shcheglovitova and Anderson 2013; 
Muscarella et al. 2014). As for 25 > , the checkerboard 2 
method with aggregation factor 4 was used (Muscarella 
et al. 2014).To build and evaluate the niche model, the 
algorithms were selected to conduct using modeled 
response flexibility (L, LQ, H, LQH, and LQHP) and 

penalty against complexity (0.5254.5) by 0.5-multiplier 
step value. Thus, Maxent based on the presence-back-
ground algorithm was successfully run and created evalu-
ation results for 45 clamped models of each species. The 
best model between these models was selected based on 
the lowest AICc and delta AICc value (Table 1). Later, 
according to these models, Maxent v.3.4.4 (Phillips et al. 
2017) as 30 replicates was run separately for every spe-
cies. The analysis also identified the bioclimatic vari-
ables that best contribute to the future distribution of 
each species (Supplementary materials Fig. S2–7).

Fig. 6  Potential distribution of L. strigata under both current and future climatic scenarios in Türkiye. The warm colors indicate the most suit-
able areas
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We also performed the multivariate environmental 
similarity surface (MESS) analysis. This analysis cal-
culates the similarity using training data and future cli-
matic layers and thus shows the degree of environmental 
change. When MESS has a smaller and positive value, 
it indicates the importance of climatic difference, but 
when MESS has a negative value, it points out that at 

least one variable has a value that is outside the range 
and this is a novel environment (Elith et al. 2010). In 
other words, positive values of MESS suggest analog 
(similar) climatic conditions whereas negative values of 
MESS suggest non-analogue (dissimilar) climatic condi-
tions (Montagnani et al. 2022).

Fig. 7  Potential distribution of L. viridis under both current and future climatic scenarios in Türkiye. The warm colors indicate the most suitable 
areas
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Results

Evaluation and selection of the best model 
for ecological niche modeling

For each Lacerta species, 45 models that have differ-
ent regularization multiplier and feature class were 
generated. For L. agilis, from these models, it was 
the best model that uses “L” feature class along with 
a regularization multiplier of 1 (rm.1_fc.L), and with 
the lowest delta.AICc. The average test AUC for the 
replicate runs was 0.734 for L. agilis. The model for 

L. diplochondrodes was the one that uses “H” feature 
class along with a regularization multiplier of 2.5 
(rm.2.5_fc.H). Train_AUC was 0.62 for this species. For 
L. media, train_AUC was 0.761 and had “L, Q, H, and 
P” feature classes with a regularization multiplier of 2 
(rm.2_fc.LQHP). In L. pamphylica, train.AUC that has 
“L, Q, and H” feature classes with a regularization mul-
tiplier of 2.5 was 0.625 (rm.2.5_fc.LQH). Train_AUC 
and regularization multiplier of L. strigata were 0.73 and 
3.5, and it had “L, Q, H, and P” feature classes (rm.3.5_
fc.LQHP). For L. viridis, train_AUC based on “L, Q, H 
and P” feature classes with a regularization multiplier 

Fig. 8  The multivariate environmental similarity surface (MESS) of the potential area for L. agilis under the future projection scenarios. Warm 
colors show novel environment areas. A SSP245 in 2041, B SSP585 in 2041, C SSP245 in 2081, and D SSP585 in 2081
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of 3 was 0.748 (Table 1). The most important variables 
were precipitation seasonality (bio15) for L. agilis, 
annual precipitation (bio12) and precipitation seasonal-
ity (bio15) for L. diplochondrodes, annual mean tem-
perature (bio1), mean temperature of the wettest quarter 
(bio8), annual precipitation (bio12), and precipitation of 
driest month (bio14) for L. media, precipitation of driest 
month (bio14), annual precipitation (bio12), and annual 
mean temperature (bio1) for L. pamphylica, mean tem-
perature of the wettest quarter (bio8) and annual precipi-
tation (bio12) for L. strigata, and annual precipitation 
(bio12) for L. viridis (Figs. S2–7).

Present and future distribution patterns of genus 
Lacerta

Within minimum convex polygon, the present ecologi-
cal niche model emphasized areas of high suitability in 
the east region for L. agilis. Although there are similar 
patterns in the future distributions, the highest relevance 
will be seen in the ssp245 scenario in 2081, while the 
lowest relevance is projected to occur in the ssp585 sce-
nario in 2081 (Fig. 2). In L. diplochondrodes, Central 
Anatolian regions were unsuitable, while the southern 
coastal areas were the most suitable. This remained the 

Fig. 9  The multivariate environmental similarity surface (MESS) of the potential area for L. diplochondrodes under the future projection sce-
narios. Warm colors show novel environment areas. A SSP245 in 2041, B SSP585 in 2041, C SSP245 in 2081, and D SSP585 in 2081
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same in all future distributions and only unsuitable areas 
increased in Central Anatolia. In addition, favorable cli-
matic environments are projected to increase in all future 
scenarios (Fig. 3). For L. media, the middle Black Sea 
regions were most favorable and the other parts showed 
partial eligibility. However, in all future scenarios, this 
favorable environment will probably appear in both 
the middle Black Sea and eastern areas of the polygon 
(Fig. 4). L. pamphylica has a narrow distribution; the 
west and southeast parts of the coastal areas were the 
best suitable. This status remained the same in all future 
dispersal, but the scenario in the ssp585 scenario in 2081 
showed the most suitable areas across all coastal parts 
(Fig. 5). Likewise, the southeastern region was the most 

favorable for L. strigata. This was the case in all areas 
of future distribution patterns (Fig. 6). For L. viridis, 
the Black Sea coastal parts indicated the best suitable 
areas and this remained the same in all future scenarios. 
However, these suitable areas is projected to reduce in 
both 2041 and 2081 of the ssp585 scenario (Fig. 7).

Multivariate environmental similarity surface 
analysis

Under the future projection scenarios, dissimilar climatic 
conditions in all distribution areas of species are avail-
able in general (Figs. 8, 9, 10, 11, 12, and 13). When they 
are compared with the future distribution area under the 

Fig. 10  The multivariate environmental similarity surface (MESS) of the potential area for L. media under the future projection scenarios. Warm 
colors show novel environment areas. A SSP245 in 2041, B SSP585 in 2041, C SSP245 in 2081, and D SSP585 in 2081
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same future projection scenarios and time periods, the 
suitable potential areas of Lacerta species are predicted 
in dissimilar climatic conditions.

Discussion

Climate change affects all components of biodiversity 
from organism to biome and is an important threat to 
biodiversity (Bellard et al. 2012). Therefore, adapta-
tion to climate change in the near future will require 
vertebrates to change their climatic niche at an unprec-
edented rate (Quintero and Wiens 2013). In this context, 
we investigate how six lacertid species respond to the 

expected climate change using ecological niche mod-
eling. Overall, our results predict an increase in suit-
able habitats for these six species under future climatic 
conditions. However, while this may seem positive for 
these species, it may also be negative because reptiles 
that have an intermediate ability to move are influenced 
by the change in climate (Bozkurt 2022). Therefore, in 
the future, species’ range can shift, but this movement 
might be very slow (Vaissi 2022) such that from 1940 
to 2005, Spanish reptiles had been able to move 32.5 km 
(Moreno-Rueda et al. 2012). It is a known fact that if 
warming trends continue because of climate change, 
then the species in the lowland habitats will be forced 
to migrate to higher elevations to find the most optimal 

Fig. 11  The multivariate environmental similarity surface (MESS) of the potential area for L. pamphylica under the future projection scenarios. 
Warm colors show novel environment areas. A SSP245 in 2041, B SSP585 in 2041, C SSP245 in 2081, and D SSP585 in 2081
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conditions; however, the species that do not achieve this 
might meet the risks of extinction (Dayananda et al. 
2021).That is why the rapid decline and local extirpa-
tions of many lizards populations as a consequence of 
change in climate might happen (Laspiur et al. 2021).

Generally, species close to each other can give simi-
lar responses to environmental conditions (Vaissi 2022). 
Although five of the studied species are widely distrib-
uted, L. pamphylica, an endemic species, has a narrow 
distribution. This species occupies a small area in the 
southwestern Taurus between 0 and 1078 m altitude 
(Bülbül et  al. 2022), but its future range has higher 

probability of persistence than the current. For a lizard 
species that exists in a limited area of 2 square kilo-
meters, suitable habitats were similarly found to exist 
in future climatic conditions (Laspiur et al. 2021). It 
is seen that there will be expansions in the suitable 
habitats of almost all of the species we have studied 
here. Vaissi (2022) reported a similar pattern in Phryno-
cephalus maculates Anderson 1872 and P. persicus De 
Filippi 1863 that will have the potential to expand their 
distribution range as a result of climate change in future 
years. Additionally, Gómez-Cruz et al. (2021) showed 

Fig. 12  The multivariate environmental similarity surface (MESS) of the potential area for L. strigata under the future projection scenarios. 
Warm colors show novel environment areas. A SSP245 in 2041, B SSP585 in 2041, C SSP245 in 2081, and D SSP585 in 2081
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that there was a substantial increase in the distribution 
range of Heloderma alvarezi Bogert and Martin Del 
Campo 1956 in 2070 according to future projections. 
In fact, climatic conditions affect the behavior of living 
things and their habitat selection. This can be positive 
or negative. Our study shows that the distribution range 
of the species will expand in future projections. Also, 
it is predicted that novel environments will be formed 
for the species belonging to the genus Lacerta in future 
climate scenarios. However, the process of moving and 
adapting to new environments for these species cannot 
be predicted because the adaptation process to changes 
in climate is substantially slow and the ability to resist 
these changes is restricted (Foden et al. 2007).

Consequently, it is predicted that there is a general 
expansion in the suitable habitats of species belonging 
to the genus Lacerta due to climate change. However, 
if the ability of species to move and reach these areas 
with suitable habitat is limited, it is obvious that this 
situation will be negative, especially for species with 
narrow distribution areas. Our study also serves as a 
recommendation for the assessment of the current sta-
tus on the IUCN red list. This is particularly impor-
tant for the identification of protected areas in terms of 
suitable habitats for the narrowly distributed L. pam-
phylica species. In addition, the conservation status of 

L. diplochondrodes, which is not yet included in any 
category in the IUCN red list in terms of climatic char-
acteristics, is expected to provide an idea for the evalu-
ation of suitable habitats.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 023- 26351-4.
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