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Abstract

Patch context is a way to describe the effect that the surroundings exert on a landscape patch. Despite
anthropogenic context alteration may affect species distributions by reducing the accessibility to suitable patches,
species distribution modelling have rarely accounted for its effects explicitly. We propose a general framework to
statistically detect the occurrence and the extent of such a factor, by combining presence-only data, spatial
distribution models and information-theoretic model selection procedures. After having established the spatial
resolution of the analysis on the basis of the species characteristics, a measure of anthropogenic alteration that can
be quantified at increasing distance from each patch has to be defined. Then the distribution of the species is
modelled under competing hypotheses: H0, assumes that the distribution is uninfluenced by the anthropogenic
variables; H1, assumes the effect of alteration at the species scale (resolution); and H2, H3 … Hn add the effect of
context alteration at increasing radii. Models are compared using the Akaike Information Criterion to establish the
best hypothesis, and consequently the occurrence (if any) and the spatial scale of the anthropogenic effect. As a
study case we analysed the distribution data of two insular lizards (one endemic and one naturalised) using four
alternative hypotheses: no alteration (H0), alteration at the species scale (H1), alteration at two context scales (H2 and
H3). H2 and H3 performed better than H0 and H1, highlighting the importance of context alteration. H2 performed better
than H3, setting the spatial scale of the context at 1 km. The two species respond differently to context alteration, the
introduced lizard being more tolerant than the endemic one. The proposed approach supplies reliably and
interpretable results, uses easily available data on species distribution, and allows the assessing of the spatial scale
at which human disturbance produces the heaviest effects.
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Introduction

Human presence and activities inevitably produce changes
in the surrounding environment that may affect the occurrence
of a species in a given territory: some species may go locally
extinct because they cannot find suitable conditions, while
some others may spread to new territories because of the new
conditions. Consequently, anthropogenic habitat alteration is
considered as one of the dominant forces shaping the spatial
distribution of species [1,2], with outcomes that are sometimes
beneficial for the species and sometimes not. The conservation
biology has grown and evolved in response to human threats to
the natural world in order to set the best scientific guidance to
preserve sites and species of special interest. One of the
central topics for conservation biologists is to be able to reliably
evaluate how the distribution of a species is affected by

anthropogenic habitat alteration and loss. The issue is crucial
and may be the starting point to elaborate really effective
conservation plans.

In the last two decades the development of techniques which
allow modelling the spatial distribution of a species on the basis
of the relationship between species and environment has given
a powerful tool to face the problem: an increasing number of
studies have actually made use of spatial distribution models
(SDM) – also known as ecological niche models [3] – to answer
questions related to conservation tasks [4–6]. As their use has
increased, greater and greater attention has been paid to the
effects of the spatial scale (with different meanings) on the
modelling process [7–14]. Besides the well-known importance
of spatial scale in ecology [15,16], this particular attention
comes from the plain consideration that the distribution of a
species is the result of the combination of different factors
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(summarized in the BAM diagram – Figure 1 – where “B”
stands for biotic interactions, “A” for abiotic conditions, and “M”
for movement, i.e. area accessibility [3,17]), which act in the
geographic space and are related each other in a scale-
dependent way [11,18]. The majority of the studies focusing on
spatial scale were devoted at analysing spatial grain and/or
extent (sensu Wiens [15]) and how SDM respond to their
changes [7,8,10,12,14]. These two components in the SDM
studies have been generally associated respectively to the
resolution (pixel size) and the geographic range (extent of the
study area) at which the models are developed [8]. A relatively
less studied issue, which is related to the “extent” side of
spatial scale [15,19], was the relationship between the
characteristics of the surroundings of a pixel on the predicted
suitability of that pixel [9,15]. This aspect of extent (known as
“patch context” in landscape ecology [19]) may play an
important role in shaping the distribution of a species, for
example by conditioning the dispersal ability [20–22], i.e. the
“M” factor of the BAM diagram. A support for the relevant role
of patch context comes from the few studies that explicitly
incorporate it among the variables employed to build the
models [9,13,23]: all of them found a significant effect of patch
context, and in some cases [9] they were able to assess the
spatial extent to be considered “context”. Nevertheless, the
experimental design adopted by all these studies was based on
a sample of intensively surveyed sites, thus limiting the
geographic range of the study area and preventing the
assessment of general pattern of dependence between the
species distribution and the spatial scale of the context.
Furthermore, context was defined without an explicit reference
to the anthropogenic alteration, thus none of the above studies
explicitly addressed the link between human-induced alteration
and species occurrence, nor the scale at which human
activities act on species distribution. In the light of this lacks,
our aim is to propose a generalizable approach to assess the
occurrence and the spatial scale (in term of context extent) of
the anthropogenic effect on the species distribution by
combining species presence data, SDM and information-
theoretic model comparison (IMTC) [24].

SDM have been developed to predict the distribution of a
species on the basis of known occurrences and a set of
environmental layers (e.g., annual precipitation, annual mean
temperature, land use): the model produces suitability scores
for all the sites within a given area by capturing species-
environment relationship [5]. Since links between species and
environment are the key-step of the procedure, these models
are also known as ecological niche models [3,6]. Without
entering the debate about nomenclature and related concepts
[3,25–27], we adopt the term “SDM” according to Peterson and
Soberón [3], since the objective of our modelling is the estimate
of the actual distribution, taking into account accessibility
(though indirectly; see below) [3]. Depending on the biological
questions, SDM may be used as a predictive or explanatory
tool: while in the former case SDM are employed to make
predictions to new sites (either in space or in time) [28,29], in
the latter case SDM are built to investigate the causes of the
observed distribution, i.e., models serve to evaluate the effects
of the variables used to build the SDM on the performance of

the model itself: it is implicitly assumed that any effect on the
model corresponds to a relationship between the variable and
the distribution [30,31]. Our use of SDM belongs to this latter
case. ITMC is a general well known approach in ecology and
other branches of sciences [32]. It allows comparing different
hypotheses, each represented by a model, searching for the
best one [33]. The competing models are ranked on the basis
of an information criterion (such as the Akaike Information
Criterion or the Bayesian Information Criterion) which
measures the amount of the information not captured by the
model, weighed for the complexity of the model itself [32,33]. In
addition to the ranking of the models from the best to the worst,
it is also possible to evaluate how much a model, and its
underlying causal hypothesis, is better than another one [33].
Our idea is to combine these two techniques in order to answer
the initial question - how is the observed distribution of a
species affected by anthropogenic habitat alteration? - paying
attention to the spatial scale of the processes involved.

Methodological Scheme

The approach can be summarized as follows: i) establishing
the resolution (grain component of the spatial scale) of the
analysis, taking into consideration the characteristic of the
species under study; ii) defining a measure of habitat alteration
that can be applied at different spatial scales (i.e. quantifiable
at increasing distance from each pixel); iii) obtaining a set of
geographic layers each representing the alteration at a given
scale iv) formulating a set of competing hypotheses with or
without the habitat alteration factors; v) translating each
hypothesis into an SDM; vi) comparing the obtained SDM using
the ITMC, in order to assess the SDM (and the hypothesis
underlying it) best explaining the species occurrence. In
formulating the competing hypotheses, the null hypothesis
assumes that anthropogenic changes do not affect distribution
(H0): an approximation of H0 is a model which includes only
climatic and topographical variables (that is to say a
topoclimatic model), since it predicts species occurrence when
habitat variables reflect their climatic potential and all the
potentially suitable areas are accessible to the species [3].
Even if these assumptions may seem unrealistic, they serve as
a starting point for comparing the models generated under
hypotheses that call for anthropogenic effects. We are aware
that other non-anthropogenic factors may actually affect both
dispersal and pixel characteristics and consequently trim the
potential distribution, but we consider that: i) a careful and
expert-based choice of the extent of the study area may help
producing a more realistic H0 [6,34]; ii) the aim is not to build
the fittest SDM, but to assess if adding anthropogenic factors
improves the fit of the model. We expect that anthropogenic
alteration acts either on the quality of a pixel as on the
permeability of its surroundings, thus reducing or modifying the
potential distribution of a certain amount [35]. So we are
interested in the trimming effect produced by an anthropogenic
variable on the topoclimatic model.

Within the previous framework, each of the alternative
HYPOTHESIS H1, H2 etc. should include the topoclimatic
variables and one or more layers that describe anthropogenic
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alterations at different scales. In this way a set of nested
models are obtained, each differing from H0 only for the
presence of the human effect among variables. In order to
illustrate our theoretical scheme at work and explain the detail

of the procedure, we applied it to a set of data on two Sardinian
lizard species.

Figure 1.  BAM diagram.  Simplified version of the Biotic-Abiotic-Movement diagram from Sauge et al. [16]. “G” represents the
geographic space. “B” is the part of G that presents the correct set of biotic conditions: in this simplified version B is assumed not to
constrain species distribution [3,16]. “A” is the part of G that holds suitable abiotic conditions. “M” represents the sub-area of G that
has been accessible and explored by the species. The intersection between M and A defines the species distribution (G0). GI is the
area that is potentially suitable, but has not been accessible to the species.
doi: 10.1371/journal.pone.0067573.g001
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Species and study area
We applied our scheme to the case of two congeneric

lacertid lizards which inhabit a large Mediterranean island. The
choice of a large island is motivated by two reasons: i) to
bypass the problem of defining the limits of the study area; ii) to
avoid the problem of resources limitation due to small
dimension of the area.

Sardinia (40.10° N, 8.95° E, Italy) is a large island (24090
km2) located in the Tyrrhenian Sea (Western Mediterranean
Sea). The numerous islets that surround the main island were
not included, because of the particular conditions they
represent. Following the Köppen-Geiger climate classification
[36], the climate belongs to the Cs type (Warm temperate
climate with dry summer), subtype a (hot summer) and b (warm
summer). Vegetation consists of forests (primarily evergreen
oak and cork trees and deciduous woods with oak and
chestnut) and Mediterranean scrubs [37].

The island is inhabited by both endemic and introduced
species [38], including the lacertid lizards of the genus
Podarcis, the Tyrrhenian wall lizard P. tiliguerta (Gmelin, 1798),
and the Italian wall lizard P. siculus (Rafinesque-Schmaltz,
1810). The former is a small lizard (snout-ventral length in
general up to 6.5 cm [39,40]) endemic to Corsica and Sardinia
and their surrounding islets. It shows a great ecological
plasticity occurring preferentially in sparse scrub with rocky
outcrops, but avoiding patches with too dense woodland and
habitats characterized by intensive agriculture [40,41]. It ranges
from the sea level up to about 1800 m a.s.l. [41,42]. The Italian
wall lizard, is a medium-sized lizard, slightly larger than P.
tiliguerta (snout-ventral length up to 9 cm [39]), occurring in
southern-central Europe (continental Italy and on many islands,
coastal region of Slovenia and Croatia and some areas of
Montenegro). It shows a great colonization ability (naturalized
populations are found in Portugal, Spain, France, Turkey,
Tunisia, Libya and USA [39,43]), and it has been introduced in
Sardinia in subsequent historical or protohistorical times,
maybe following commercial routes from Sicily [44,45]. The
Italian wall lizard can use many different habitats (including
anthropic ones) characterized by sunny and open areas
[39,41–43]. These two species have been chosen because of
their different response to anthropization, the Italian wall lizard
being more tolerant. So we should expect differences in the
effects of anthropogenic habitat alterations between them.

A total of 934 species occurrence points were collected
during surveys from 2000 and 2009 as part of the study carried
out by the Museo di Storia Naturale dell’ Università di Firenze,
Sezione di Zoologia and the Sezione Sardegna of the Italian
Society of Herpetology S.H.I., (Societas Herpetologica Italica)
in order to produce the Italian Herpetological Atlas and Fauna
d’Italia Reptilia volume [38,43] and by the Regione Autonoma
della Sardegna for the realisation of the regional atlas (still on-
going). This research was carried out under permits released
by the Italian Ministry of Environment. None of the animals was
captured and/or manipulated, and species identification was
made by sight (this kind of study does not need permits under
the current Italian and European legislation; furthermore, the
sampled area falls outside any kind of restricted areas which
needs permission). Geographical locations of species

occurrence points were recorded using a GPS. No data about
absence were available, so the sample represented a
presence-only dataset. Data were resampled to a 100 × 100 m
grid obtaining respectively 291 presence cells for P. tiliguerta
and 355 for P. siculus. We chose this spatial grain on the basis
of available data about the dispersal ability of the lizards of the
genus Podarcis. In particular, maximum home range dimension
has been demonstrated to be of about 300 m2 [46–48] and
homing ability has been registered up to 150 m distance
[46,49]. So, a 100 m wide cell is expected to enclose the whole
home range of a lizard and to represent its dispersal ability; for
these reasons this scale can reliably represent the species
spatial scale.

Two kinds of environmental data at the same spatial
resolution (100 m) were directly obtained from the web: a
digital elevation model (DEM) (http://srtm.csi.cgiar.org) and a
map of the land use relating to 2008 (http://
www.sardegnageoportale.it). Starting from this cartographic
base, two sets of variables were generated: i) topographic,
from DEM (altitude, slope and potential solar radiation), and ii)
anthropic, from land use (see below). We had initially chosen
not to use the many bioclimatic databases available on the web
because none of them is detailed enough to allow 100 × 100 m
resolution (e.g., the 19 bioclimatic variables of the Worldclim
series, www.worldclim.org, has a maximum resolution of about
1 × 1 km at the latitude of Sardinia). Nevertheless, we
compared the variables derived from DEM (resampled to 1 km)
to those from Worldclim [50]: the high values of the correlation
coefficients among most of them (12 out of 19; Table S1)
supported the choice of using altitude, slope and potential solar
radiation as surrogates of these bioclimatic variables. On the
other hand, since some ecologically meaningful climatic
variables were not well represented in our H0, the null model
would have been easily improvable, via correlation, by any kind
of appended variable. To avoid this issue, we decided to
include also those bioclimatic variables that were not highly
correlated with the topographic ones or among each other (i.e.,
bio2, mean diurnal temperature range; bio7, temperature
annual range; bio13, precipitation of wettest month; bio15,
precipitation seasonality). All these extra factors were
previously interpolated to 100 m spatial resolution. Then, the
final set of topoclimatic variables was composed by three
topographic and four climatic layers.

Anthropic variables were defined taking into consideration
the two sides of the spatial scale: grain (resolution) and extent
(patch context). The variable “alteration” was built to quantify
the direct habitat loss following anthropogenic alteration (sensu
Fahrig [35]), and was modelled at the species scale by coding
each cell with zero (not altered) or one (altered). Considering
the historical background of land use in Sardinia, habitats
completely not influenced by human activities are very scarce.
Thus we defined “alteration” an intensive and direct exploitation
of land, currently on-going and such that it prevents semi-
natural structure from evolving (from this perspective, cropland
and urban settlements are examples of altered habitat; cork-
oak forest and pastures have to be considered not altered). We
reclassified the land-use categories on the basis of this
definition and the peculiar characteristic of Sardinian territory
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(table S2). To quantify the alteration of the context of each pixel
at different spatial scales, we first chose a set of increasing
distances, starting from the one that allow defining as “context”
the eight pixels directly in contact with the considered one (150
m, 500 m, 1 km, 5 km, 10 km, 15 km, 20 km). For each
distance we obtained the proportion of altered pixels (defined
by variable “alteration”) within a circle centred in the centre of
the pixel and with a radius equal to the distance considered.
Then we computed the spatial correlation among all these
“context alteration” layers (table S2) and we selected: i) the
minimum distance at which the correlation coefficient (rs) with
“alteration” did not exceed 0.70; ii) the subsequent minimum
distances at which correlations with the previous selected layer
fell below 0.70. In this way two distance ranges were chosen: 1
km (the finest scale for pixel context – variable PC-fine) and 15
km (variable PC-coarse). In conclusion, we derived three
anthropic variables: “alteration” which represents the pixel state
with respect to human disturbance; PC-fine and PC-coarse
which measures context alteration at two different spatial
scales. The spatial correlations among the final set of variables
did not show coefficients exceeding 0.70 (maximum value was
0.68; table S3). Thus, we were able to build SDM under four
causal hypotheses: H0 (topoclimatic), H1 (topoclimatic and
alteration), H2 (topoclimatic, alteration and PC-fine) and H3

(topoclimatic, alteration and PC-coarse).

Modelling procedures
Many algorithms are available to model the spatial

distribution of a species [6]. Among them, we chose the
maximum entropy method [51] implemented by the software
Maxent (version 3.3.3e; http://www.cs.princeton.edu/~schapire/
maxent/), because it has been demonstrated to outperform
other methods [52], and does not require absence data (it uses
presence sites and background sites) [51]. When using
Maxent, two fundamental decisions have to be taken. The first
deals with the choice of the background. Besides the set of the
presence points, indeed, Maxent uses a set of background
points, which allow characterizing the environment available to
the species. The choice of the background is particularly critical
because it may influence the results if the sampling effort
across the study area is not homogeneous [53]. A general
framework to deal with sampling bias is getting the background
points with the same bias as the presence sample [54]. Our
sampled areas were not homogeneously distributed across the
Sardinian island, but they concentrated along the road network
(Figure S1). So, we decided to take the background points from
a 2 km wide buffer along the roads (the map of the road
network was obtained from http://www.sardegnageoportale.it).
The selected distance represented the mean plus one standard
deviation of the distances between each presence point and
the nearest road. The background points were then generated
by extracting 10,000 random points from this reduced area and
adding the presence points. In this way almost the same
sample bias affects presence sites and background points [54].
The second decision concerns the kind of “features” which
have to be included in the model. Maxent, in fact, does not use
the raw variables, but their transformed versions (called
“features”) [51]. Maxent handles five kinds of features: linear,

quadratic, product, threshold and hinge. The use of features
instead of the raw variables is preferable when a complex
process has to be modelled [55], but it leads to some over-
fitting problems [55,56]. To avoid this theoretical risk we
developed all the models by using only the hinge features,
reducing redundancy [55].

Models evaluation and comparison
Model discriminating performance was estimated using AUC

(Area Under the receiver operating characteristics Curve),
which is a threshold-independent measure of the ability of the
model to discriminate between background and presence sites
[48]. AUC is widely applied in species distribution modelling to
assess the classification ability of a model, but its employment
in presence/background studies has been criticised by some
authors [57–59] because: i) “AUC assumes nothing about the
relative costs of errors of omission and commission” [58]; ii)
high AUC values may not reflect real accuracy if the “test
presences disproportionally represent inhabited areas” [59]. In
order to partially overcome these limits, we adopted two
strategies: firstly, as suggested by Smith [59], we tested the
significance of the observed AUC through randomization [60].
For both the species we randomly extracted from the
background 999 samples of the same size as the observed
ones (P. tiliguerta, N = 291; P. siculus, N = 355); we used
these pseudoreplicates to generate 999 models and obtain the
distribution of the AUC values. Then, we computed the
probability associated to the observed AUC using the formula:

 P= v+1
n+1 (eqn. 1)

where v is the number of values in the AUC distribution that
exceed the observed one, and n is the total number of the
pseudoreplicates [61]. Secondly, we converted the continuous
suitability scores of Maxent output into binary outcomes (0 for
absence, 1 for presence) and then we measured sensitivity
(frequency of presence sites correctly classified) and specificity
(frequency of pseudo-absences correctly classified) of each
model. The cut-off value needed for the output conversion was
chosen in order to maximize the two measures, i.e. to obtain
equal sensitivity and specificity [62].

Model selection was carried out by means of IMTC [24]. We
used the small sample unbiased Akaike Information Criterion
(AICc) [63], since all the tested models had a number of free
parameters that exceeded n/40 (n is the number of the
observations; table 1) [32,33]. The models were ranked on the
basis of the difference between the model AICc and the
minimum value of AICc among the models. Also the Akaike
weights (wi) were computed [33]. Akaike weights can be
interpreted as the probability that model i is the best model for
the observed data, given the candidate set of models [32]. The
AICc were calculated with ENMtools ver. 1.3 (http://
enmtools.blogspot.com/) [56,64].

Finally, in order to assess the effect size of the three
hypothesized factors (topoclimatic, pixel and context
alteration), we applied a variation partitioning analysis [65]
adapted to univariate model output, following Muñoz et al. [66]:
the approach allows disentangling the pure effect of each factor
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while controlling for between-factors overlap. To evaluate the
direction of the effect, we visually investigated marginal and
single response curves generated by Maxent: the former plots
the change in model prediction as each variable is varied,
keeping all the other ones at their average sample value; the
latter is obtained by constructing a model using only one
variable at a time, and then plotting the response with respect
to the possible values of the variable itself [51]. The
combination of the two ways allowed evaluating the effect of
the among-variables correlations on the response. To obtain
confidence intervals of the response curves, we used the
cross-validation procedure of Maxent, splitting the original
sample in ten sub-samples.

Results

A summary of the results concerning the developed SDM is
reported in table 1. Looking at the discriminating performances
(AUC), all the models show a significant deviation from chance
and the best models for both species correspond to H2.
Topoclimatic model (H0) is clearly the worst among those of P.
tiliguerta, while it performs like H1 and H3 for P. siculus. The
analysis of sensitivity and specificity values (table 1) leads to
the same conclusion. The visual comparison of model maps
(Figure 2) highlights that those built with PC-fine (H2) tend to
better identify the unsuitable areas (blue colour), especially for
the Tyrrhenian wall lizard. In both species, H2 hypothesis is
also the most informative, showing the lowest AICc and having
Akaike weight very close to one. The ranking of the models is
slightly different between the two species (H2>H3>H1>H0 for P.
tiliguerta; H2>H3>H0≥H1 for P. siculus), but all the models that
have incorporated patch context characterizations are more
informative than those that have simply used the alteration
state of the pixels (H1).

The variation partitioning of the output from H2 gives different
results in the two lizards’ cases (Figure 3). The pure effect of
climate and topography explains the largest part of model
variation for P. siculus (80.61%), while the role of patch context
is marginal (2.34%). Alteration shows nor a pure nor an
overlapped effect on distribution and all the intersections are
null. Results for P. tiliguerta are more complex: pure effects are
found for climate and patch context (23.30% and 12.45%
respectively) but not for alteration which shows complete
overlap with patch context alone on one hand (6.32%), and
with the other two factors together on the other hand (10.77%);
topoclimatic and patch context factors share 11.67% of
variation, after considering alteration.

The effects of the anthropogenic variables on the modelled
suitability are graphically synthesized in Figure 4. All the
response curves showed very narrow ranges, meaning low
variation in response with the subsample considered. Marginal
and single responses to habitat alteration show similar
patterns: a negative relationship with suitability for the
Tyrrhenian wall lizard, weak in the marginal response (Figure
4A), more evident in the single response (Figure 4B); no
apparent relationship for the Italian wall lizard (Figure 4A, 4B).
Also the responses to patch context (PC-fine) are quite
different between the two species (Figure 4C, 4D): the Italian
wall lizard seems to tolerate higher levels of altered context
than the congeneric species, and suitability starts to decrease
when alteration is above 40% (marginal response) or 85%
(single response). On the contrary, P. tiliguerta appears to be
more sensitive to altered context, since, in both graphs,
suitability decreases with increasing alteration: the reduction
becomes faster when alteration is above 40% (Figure 4C, 4D).

Discussion

During recent years, scale dependent effects are attracting
more and more interests of the studies on species distribution
modelling [7–14]. There is increasing evidence that reliability of
SDM as well as our understanding of the consequences of
human-induced alterations largely depend on the scale at
which they are modelled. This may have relevant effects on the
conservation measures that can be implemented to preserve
species. We proposed a generalizable two-steps approach to
study the effect of the anthropogenic alteration of the patch
context [19] on the spatial distribution of a species, in order to
define up to what extent a distance can be regarded as
“context” for a given species in a given geographical region. In
our exemplification, based on the occurrence data of two
lacertid lizards, the models built with the inclusion of variables
accounting for habitat alteration of the context (PC-fine, PC-
coarse) have proven to perform better than the basal models
(table 1), and, more interestingly, than the models which
incorporate only local alteration (H1). For both species, the best
results were obtained setting the extent of patch context to 1
km (PC-fine, H2; table 1), and this distance has produced the
strongest trimming effect on the potential distribution (Figure 2).
PC-fine may be seen as a measure of isolation of each cell
[35,67], a property strictly related to accessibility, the “M"
component of the BAM diagram [17] [18],: the permeability of

Table 1. Models performance and comparison.

Species Hyp. k AUC Thres. Sens. = Spec. AICc Δi
P. siculus H2 45 0.774 0.394 0.692 6261.680 0.000
 H3 46 0.750 0.391 0.657 6314.613 52.933
 H0 41 0.745 0.398 0.665 6319.105 57.425
 H1 44 0.747 0.395 0.660 6319.512 57.832
P. tiliguerta H2 56 0.811 0.425 0.731 5117.208 0.000
 H3 54 0.774 0.453 0.703 5194.409 77.201
 H1 45 0.768 0.465 0.700 5202.807 85.599
 >H0 45 0.747 0.460 0.678 5250.413 133.205

Hyp: hypothesis used to build the model (H0, topoclimatic; H1, topoclimatic +
alteration; H2, topoclimatic + alteration + PC-fine; H3 topoclimatic + alteration + PC-
coarse); k number of estimated parameters in the model. AUC: Area Under the
ROC curve: probability values obtained by randomization tests are lower than
0.001 for all the models. Thres: threshold, cut-off value for binary conversion of the
original continuous output. Sens. = Spec.: sensitivity and specificity; the two
measures are the same because the threshold was chosen to maximize both of
them. AICc: Akaike Information Criterion corrected for small sample size. Δi: AICc
difference between model i and the best model. Akaike weights are not presented
since they were one for the best model in both species.
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the context towards movements decreases as isolation
increases, thus preventing to access the suitable patches [3]
and negatively interfering with meta-population dynamics [68].
Clearly, only a variable that works at the context level of the
spatial scale is able to collect information about patch isolation
and consequently its use in model building is expected to
produce more realistic SDM. Now the question becomes: how
far do we have to go by the pixel? Our results show that an
increase in the extent of the context from 1 to 15 km produces
less informative model, thus indicating that a 15 km range is
too large. The outcome seems plausible considering that M-
factor does not depend only on the permeability of the context,
but also on the dispersal ability of the species. In the case
study this ability was about 100 m [46–49], so the extent of the
context is not expected to become too large before a reduction
in its effect on shaping the species distribution may occur.
Previous studies about the influence of patch context on
animals with relative small dispersal ability (but which made
use of data from well surveyed sites and of other inference
techniques), have set the effect at the scale of some kilometres

(reptile and amphibian: 2 km [69]; beetles: till 2 km [19];
butterflies: from 1 km to 4 km [9]).

An additional relevant issue of this study is that the alteration
of the pixel context has larger consequences than the alteration
of the pixel itself (Figure 3). Also this result can be interpreted
in the light of the study species and the definition of
anthropogenic alteration we employed. Actually, both lizards
(even though differences occur) tolerate human proximity, and
may inhabit some kinds of anthropogenic habitats [40,43]. In
this case suitability depends on the “semi-natural”
microhabitats (e.g., gardens, rows of trees, ecotones between
crops, wooded micro-patches) available inside each 100 × 100
m cell. The degree of suitability guaranteed by the occurrence
of these micro-habitats depends on their amount and quality in
addition to the species considered (e.g., the endemic lizard is
more exacting and sensitive to intensive land exploitation [39]).
Nevertheless, the association of contiguous altered patches
may become a limiting factor for dispersal when there is a lack
of continuity in suitable microhabitats among adjacent cells:
this condition is able to shape the species distribution through
the M-factor. The above interpretation is consistent with the

Figure 2.  Maps of the competing SDM.  A, B, C, D represent the models under hypotheses respectively H0, H1, H2 and H3 for P.
siculus. E, F, G, H represent the same hypotheses for P. tiliguerta. Occurrences are also shown in separate maps.
doi: 10.1371/journal.pone.0067573.g002
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analysis of the variation partitioning results (Figure 3) and the
response curves (Figure 4), which show that: i) alteration of the
pixel does not substantially affect suitability (no pure effect
were found in both species) and the apparent trend exhibited in
the single response graph of P. tiliguerta is probably due to a
correlation with PC-fine; ii) altered context (PC-fine) heavily
penalizes P. tiliguerta, whereas it is partly tolerated by P.
siculus. This is what we might expect considering the different
characteristics of the two species. In fact, the Italian wall lizard:
(i) is more synanthropic than the congeneric Tyrrhenian wall
lizard [39,42]; (ii) is more effective in thermoregulation (its body
temperature shows little variation when the environmental
temperature changes [42]), so it stands up well to the warm
conditions typical of the anthropic habitats; (iii) is a better
performer in locomotor endurance tests [70]; (iv) is highly
effective in colonizing anthropic habitats, as long as parks and
garden are available [38]. All these characteristics lead us to
claim that P. siculus should have better dispersal ability in
altered landscapes, and that isolation should be a less effective
obstacle for this species, at least up to a certain threshold.

From the conservation point of view, our case study allows
drawing some important guidelines, which may be the starting
point for management actions and/or for further investigation.
Firstly, the endemic species would be seriously threatened by
habitat alteration rising; the same would not be true for the
introduced as well as long time naturalized species. So if other
natural areas will be lost, we might assist to a regression of the

endemic lizard, without a meaningful change in the distribution
of the introduced P. siculus. Secondly, the main cause of
concern at current state is represented by habitat isolation,
measured at one kilometre scale; so it would be worthwhile to
focus any actions primarily to this scale in order to limit the rise
of this parameter value. The importance of establishing the
scale and the aim of a conservation plan does not need further
discussion [15,16].

Generalizing our findings, the proposed approach, which
aimed to link the spatial distribution of a species to the
anthropogenic alteration of the patch context, has proved to
work well, giving reasonable and ecologically interpretable
results. It combines the advantages of SDM and of ITMC. The
former allows using available data on species distribution, not
necessarily taken for conservation aims [71], so reducing the
field work effort and the related costs. Furthermore it allows
simultaneously analysing larger portion of the distribution area
of a species than traditional approaches, which typically use
few subsamples of it [9,13,15,23]. The latter (ITMC), being a
general method to compare explicit hypotheses and weigh
quantifiable variable importance [32,33], may be easily applied
to assess the scale at which human disturbance produces the
strongest effects. The same approach can work well even with
other measurement of human disturbance (for instance:
pollutant concentration, invasive species presence, pesticides,
road network extension): it is sufficient to translate human
disturbance into variables quantifiable at different scales and

Figure 3.  Variation partitioning diagrams for the H2 hypothesis for the two species.  Circles represent variation explained by
each factor (climate and topography, alteration, patch context). Numbers correspond to the percentage of variation associated to
each circle subpart (pure, two-factor intersection, three factors intersection). The percentage associated to intersecting areas has
not to be interpreted as interaction, but as a variation indifferently assignable to one or more factors [65]. Values smaller than 0.01%
are not shown.
doi: 10.1371/journal.pone.0067573.g003
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then compare the models built under the null and the
alternative hypotheses.

Finally, we underline that a critical step in applying our
procedure is the choice of the “right” investigating scale (i.e.,
the resolution of the environmental and occurrence data used
in developing the SDM). This choice is fundamental in order to
correctly interpret patch context effect: using the same order of
magnitude of the species dispersal ability may be a good idea
[67], because it allows disentangling the effects of habitat loss
from those of fragmentation/isolation at the species point of
view [15].
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