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Abstract: The cleidoic eggs of oviparous reptiles are protected from the external environment by
membranes and a parchment shell permeable to water and dissolved molecules. As a consequence,
not only physical but also chemical insults can reach the developing embryos, interfering with
gene expression. This review provides information on the impact of the exposure to cadmium
contamination or thermal stress on gene expression during the development of Italian wall lizards of
the genus Podarcis. The results obtained by transcriptomic analysis, although not exhaustive, allowed
to identify some stress-reactive genes and, consequently, the molecular pathways in which these
genes are involved. Cadmium-responsive genes encode proteins involved in cellular protection,
metabolism and proliferation, membrane trafficking, protein interactions, neuronal transmission
and plasticity, immune response, and transcription regulatory factors. Cold stress changes the
expression of genes involved in transcriptional/translational regulation and chromatin remodeling
and inhibits the transcription of a histone methyltransferase with the probable consequence of
modifying the epigenetic control of DNA. These findings provide transcriptome-level evidence of
how terrestrial vertebrate embryos cope with stress, giving a key to use in population survival and
environmental change studies. A better understanding of the genes contributing to stress tolerance
in vertebrates would facilitate methodologies and applications aimed at improving resistance to
unfavourable environments.

Keywords: cadmium; cell cycle; cell metabolism and detoxification; eye development; lizard devel-
opment; synaptic plasticity; thermal stress; transcription factors

1. Introduction

The mid-blastula transition is a crucial event in vertebrate development as it represents
the moment in which the transcription of embryonic genes begins [1]. This event is finely
regulated, and any disturbance of embryonic gene expression will cause malformations,
arrested development or even the death of the embryo. In this scenario, few master
genes control and direct the correct expression of a cascade of genes determining cell
specialization in structure and functions [2].

The dysregulation of embryo gene expression can occur as a result of different insults,
of a chemical and physical nature, of environmental or, most often, of anthropogenic
origin. In placental mammals, these stress factors are able to modify embryonic gene
expression changing the feto-maternal interface at the placental level [3]. Conversely, for a
long time, the cleidoic eggs of reptiles were considered a closed system with respect to the
environment, protected from toxic substances present in the soil where they are usually
laid [4]. Nowadays, it is known that this is not completely true, since the shell and the
amniotic membranes are permeable to water and any toxic substances dissolved in it can
reach the embryonic cells [5–7]. It is also clear that substances entering the developing egg
may strongly interfere with their correct development at a morphological and molecular
level, not least influencing and altering embryonic gene expression [8–10].
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Many studies have described reptilian developmental stages [11–13] and the mor-
pho/functional effects of environmental disturbances such as humidity and tempera-
ture [14,15]. Not surprisingly, great attention has been dedicated to the mechanisms
controlling sex determination [16,17] but other aspects of reptilian development have been
completely neglected.

This is what happened to research on the effects of contaminants. Though the eggs
have permeable membranes and absorb contaminated water, very few investigations have
addressed the problem of how these contaminants impact on the developmental program.
Studies usually report on contaminant accumulation by ovaries and eggs and on their
effects on fecundity [18,19]. This lack of interest is surprising considering that reptiles
are a very ancient taxa, the first to develop an amniotic egg and ancestors of birds and
mammals. In addition, they play a relevant ecological role, being top predators controlling
soil communities. Their long lifespan, entirely in contact with the soil, makes reptiles
preferential victims of soil contamination.

An explanation for the disinterest may come from the fact that reptiles usually nest
in soil shelters and therefore might have been considered sufficiently protected against
pollution and changes in environmental conditions. However, it is clear that this is not the
case. In recent years, in fact, we assisted to a rapid decline in the population trend due to
habitat disturbances with a consequent detrimental effect on biodiversity.

Stress-linked gene expression changes could arise for many reasons and they could
be reactive to alterations in cellular and organismal physiology. If these alterations are
reproducible among different stress factors, it can be assumed that these genetic-responsive
events form a stress-associated gene expression program, which could mitigate degenera-
tive processes associated with environmental contamination and pollution. Furthermore,
the alterations in gene expression observed in cells and tissues of embryos exposed to
environmental stimuli could be an ancillary consequence, since many of these toxic in-
sults lead primarily to translational or post-translational modifications and epigenetic
dysregulations such as DNA and/or histone methylation [20,21]. It follows that past and
ongoing studies on the modulation of stress-induced gene expression in lizard embryos
may help to understand the cellular basis and biochemical mechanisms underlying the
tissue alterations observed as a result of stress factors affecting the development of embryos
considered sufficiently sheltered from environmental pollution and other harmful stimuli.

This article examines the impact of environmental stresses on gene expression during
the development of oviparous Lacertidae belonging to the genus Podarcis. In particular, the
transcriptomic responses are analysed following exposure to a chemical insult, represented
by the heavy metal cadmium, and to physical stress, a sudden drop in the incubation
temperature. Podarcis lizards are terrestrial oviparous species endemic of the Mediter-
ranean regions; they reproduce in late spring/early summer, and the eggs, usually 7/8 per
brood [22], are laid in holes dug in the ground or in walls, sheltered from excessive sun ex-
posure to avoid the risk of dehydration [23]. These lizards are the only reptiles on which the
transcriptomic effects of stressors during embryonic development have been investigated.

Cadmium-Responsive Genes in Podarcis Siculus Embryos

The incubation of fertilised eggs in cadmium-contaminated soil (50 mg/kg soil) is
not lethal for embryos, which develop without appreciable delays; however, it causes
the onset of morphological alterations that are hardly compatible with life in nature once
hatched [24]. In these embryos, skeletal malformations such as the failure to close the
cranial vault and palatal alterations are evident; vice versa, the limbs are perfectly formed.
Changes are also evident in the organization of the brain vesicles, which show various
types of malformations: open and/or dilated vesicles protruding outward or, conversely,
ventricles invaded by collapsed encephalic walls and/or eyes with over-proliferating and
folded retinal layers. The spinal cord retains its normal structure, as do organs such as the
lung, liver and kidney, where haemorrhagic foci and, in some cases, cells with vacuolised
cytoplasm and/or pyknotic nuclei are observed [7].
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Malformations are correlated with changes in gene expression, as determined by using
northern blot, mRNA differential display and reverse dot-blot techniques. Differential
display (DD) is a PCR-based technique widely used to assess changes in gene modulation
between samples at the level of mRNA [25,26]. Differentially expressed mRNAs are
identified by 4% polyacrylamide gel electrophoresis followed by automated sequencing
and, finally, results are validated by reverse dot blot analysis [8]. Comparison of transcripts
present in control and Cd-incubated P. siculus embryos allows for the identification of some
differentially Cd-modulated mRNAs (Figure 1).

Figure 1. Representative identification of cadmium-responsive genes by using the mRNA differential
display reverse transcriptase-polymerase chain reaction analysis (DDRT-PCR) performed on total
RNAs extracted from control- (Ctr) and Cd-treated (+Cd) embryos incubated for 20 days after laying
in Cd-contaminated soil. The result of such analysis was validated by subsequent reverse dot blot
hybridization [8].

Studies were performed on embryos incubated in Cd-contaminated soil and main-
tained under natural conditions of temperature and humidity, such as the control embryos
incubated in uncontaminated soil. Twenty days after laying, embryos were collected,
freed from the egg membranes and processed for gene expression analysis. This stage
represents an intermediate stage of development, during which organogenesis has begun
and embryonic genes are working to ensure correct differentiation.

The results obtained from these analyses demonstrated that Cd increases and decreases
the expression of genes involved in development and transcription regulation, cell growth
and communication, brain and eye development, metabolism and detoxification (Table 1).

Table 1. Cadmium-responsive genes identified in 20-days-old P. siculus embryos.

Gene Gene Symbol Biological Pathway Cd-Effect

Basic transcription factor 3 BTF3 Transcription regulation Inhibition

Three-hydroxy-3-methylglutaryl coenzyme A
reductase HMGR Cholesterol biosynthesis inhibition

Fizzy and cell division cycle 20 related 1 Fzr1 Control of cell proliferation inhibition

Rearranged L-myc fusion RLF Zinc finger transcription factor Induction

Topoisomerase 1-binding protein with a
broad-complex, Tramtrack and bric a brac/Pox

virus and Zinc finger

Topo1-bp, BTB/POZ
domain Transcription regulation—protein–protein interactions Induction

Ortho-denticle protein homolog 2 Otx2 Transcription factor—Brain and eye development Induction

Paired Box 6 Pax6 Transcription factor—Eye development Induction

Development and differentiation-enhancing
factor 1 DDEF1 ADP-ribosylation factor—Vesicular trafficking Induction

Voltage-gated sodium channel VGSC Sensory transduction and synaptic plasticity Induction

γ-aminobutyric acid type B receptor GABABR G protein-coupled inhibitory receptors Induction

Lymphocyte function associated antigen 3 CD58 Production of inflammatory cytokine Induction

Metallothionein MT Heavy metals homeostasis and detoxification Induction
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2. Cd-Mediated Genes Downregulation
2.1. Transcription Regulation
Basic Transcription Factor 3

The basic transcription factor 3 (BTF3), also known as nascent polypeptide-associated
complex β (NACβ), is involved in various biotic and abiotic stress processes, as well as
different physiological and developmental mechanisms [27]. It promotes the initiation of
transcription by RNA polymerase from proximal promoter elements such as the TATA
box [28]. In addition to its function as a transcriptional regulator, BTF3 also aids the
regulation of the cell cycle and apoptosis [29]. BTF3 loss-of-function mutation in mice
leads to death in the early stages of development, indicating its pivotal function in de-
velopment [30]. Decreased BTF3 expression is associated with a generalised inhibition of
transcription and protein synthesis, together with increased apoptosis; on the contrary, the
overexpression of BTF3, observed in several tumorigenic cells, prevents cell apoptosis [31].

2.2. Cellular Metabolism
Three-hydroxy-3-methylglutaryl coenzyme A reductase

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-
limiting enzyme in the cholesterol biosynthesis. In vertebrates, cholesterol is fundamental
in both embryos and adults. Its main function is to maintain the integrity and fluidity of
cell membranes and to serve as a precursor for the synthesis of steroid hormones, bile
acids, and vitamin D [32]. During embryogenesis, cholesterol and its products also mediate
cell–cell signalling via activation of nuclear hormone receptors and by controlling the
diffusion or reception of members of the hedgehog growth factor family [33]. In mammalian
embryos, mutations in genes encoding cholesterol biosynthetic enzymes are associated
with patterning defects; the lack of HMGR results in early embryonic lethality [34].

2.3. Cell Cycle Regulation
Fizzy and Cell Division Cycle 20 Related 1

The folding of retinal layers and periventricular walls of encephalic vesicles in P. siculus
embryos exposed to cadmium is ascribable to the increased proliferation rate in neuronal
cells, thus demonstrating that Cd interferes with the regulation of the cell cycle by increasing
mitosis [9]. The protein fizzy and cell division cycle 20 related 1 (Cdh1 o fizzy-related 1, fzr1)
is an activator of the anaphase-promoting complex/cyclosome (APC/C), which plays a
role in the mitotic cell cycle. Indeed, APC/C regulates proteolysis, a process that is essential
for cell-cycle progression, signal transduction, and development [35]. Cdh1 is a conserved
protein identified as a limiting, substrate-specific activator of APC-dependent proteolysis.
Proteolysis mediated by the APC triggers chromosomal segregation and exit from mitosis.
In the cell, a decrease in the level of Cdh1 protein causes APC/C inactivation leading,
consequently, to cell cycle progression and mitosis. By using a P. siculus-specific Cdh1
cDNA fragment as a probe, Northern blot analysis demonstrates the downregulation of
this gene in embryos incubated in Cd-treated soil [36], thus suggesting that cadmium alters
the expression of at least one of the players regulating mitotic rate and cell proliferation.

3. Cd-Mediated Genes Upregulation
3.1. Transcription Regulation
3.1.1. RLF Zinc Finger Protein

The zinc finger RLF, known as Rearranged L-myc fusion, is a classical C2H2-type
(Cys2Hys2) zinc finger (Znf). The C2H2 Znf is the most common DNA-binding motif
found in eukaryotic transcription factors; it can also bind to RNAs and proteins [37]. Znf
domains are relatively small protein motifs which contain multiple finger-like protrusions
that make tandem contacts with their target molecule. Znf-containing proteins play a role
in gene transcription, translation, mRNA trafficking, cytoskeleton organization, epithelial
development, cell adhesion, protein folding, chromatin remodelling and zinc (or more in
general metal) sensing [38,39].
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3.1.2. Topoisomerase 1-Binding Protein with a BTB/POZ Domain

This partially uncharacterised protein at the C-terminus binds the Topoisomerase 1
(Top 1); it is assumed to regulate the expression levels and distribution of TOP 1, through
an unknown mechanism [40]. It may play a role in mesenchymal differentiation promoting
myogenic differentiation and suppressing adipogenesis. The N-terminus contains a proline-
rich region and a BTB/POZ domain (broad-complex, Tramtrack and bric a brac/Pox virus
and Zinc finger), both of which are typically involved in protein–protein interactions [41].
The BTB domain is found in proteins involved in a wide variety of regulatory events
throughout development. Many BTB proteins are transcriptional regulators that mediate
gene expression through the control of chromatin conformation [42]. The functions of
several BTB genes have been shown to be necessary for normal eye development [43]; the
tramtrack gene overexpression results in a transformation of photoreceptor neurons into
non-neuronal cone cells [43].

3.2. Master Regulatory Genes in Eye Development
Otx 2 and Pax6

In vertebrates, eye development starts with the specification of retinal progenitor cells
in the anterior neural plate by the overlapping expression of several transcription factors.
Among them, the proper expression of the two homeobox genes Otx2 (ortho-denticle
protein homolog 2) and Pax6 (Paired Box 6) is essential for normal eye development.
Otx2 upregulation in mice induces ephitelial–mesenchimal transition and alteration of
the lens cells [44]; in the same embryos, loss of Otx2 function leads to severely altered
cranial phenotype [45], whereas heterozygous deletion leads to variable phenotypes [46].
Additionally, Pax6 overexpression results in optic disc malformation, progressive retinal
dysplasia, and microphthalmia [47]. In Pax6-deficient mice and in heterozygous mutants,
eyes develop with different severe defects [48–50].

Incubation in Cd-contaminated soil has been observed to be highly toxic to the retina
of Podarcis embryos, causing significant developmental anomalies; in particular, a marked
retinal folding is observed [9]. To evaluate the possible involvement of a dysregulation of
Pax6 and Otx2, the levels of gene expression and localization of Pax6 and Otx2 transcripts
in the developing eyes of control and Cd-treated embryos were investigated. Northern
blot analysis shows an increased expression of both Pax6 and Otx2 genes in the cranial
region of embryos incubated in Cd-contaminated soil. In parallel, immunocytochemical
analysis shows that, in embryos exposed to cadmium, the distribution of messengers
does not undergo any significant difference compared to controls, both in the intact or
folded retina [9].

3.3. Membrane Trafficking
Development and Differentiation-Enhancing Factor 1

The Development and Differentiation-Enhancing Factor 1 (DDEF1) gene encodes
an ADP-ribosylation factor GTPase-Activating Protein (ArfGAP) protein, also known as
centaurin, and two ankyrin repeats. ArfGAP1 is an enzyme that promotes hydrolysis of
GTP bound to ADP-ribosylation factor 1 and is required for the dissociation of coat proteins
from Golgi-derived vesicles, a critical step in vesicle formation and intracellular vesicle
trafficking [51]. Centaurins are also known to activate phosphoinositide 3-kinase, a key
regulator of cell proliferation and motility in addition to vesicular trafficking [52]. It has
been demonstrated that Arfs are susceptible to the presence of cell stressors, including
cadmium [53,54] contributing to Cd resistance, probably by maintaining membrane in-
tegrity and by modulating membrane trafficking. The ankyrin repeat is a 33 aminoacidic
residues motif that mediates the protein–protein interaction in eukaryotes. The repeat
has been found in transcriptional initiators, cell-cycle regulators, ion transporters, signal
transducers and cytoskeletal proteins [55]. Ankyrin overexpression in plants is associated
with resistance to stressors, such as salt tolerance [56], while in mammals it is associated
with increased apoptosis that promotes p53 activation and tumour cell proliferation [57].
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3.4. Sensory Transduction and Synaptic Plasticity
3.4.1. Voltage-Dependent Sodium Channel

The voltage-gated sodium channels are membrane proteins typical of excitable cells
such as neurons and myocytes. They are involved in controlling nerve transmission, sen-
sory transduction, muscle contraction and synaptic plasticity, and, during embryogenesis,
play a pivotal role in axon elongation and neuronal circuit formation [58]. Anomalies in
voltage-dependent sodium channels are always associated with neurological disorders [59].
The upregulation of the gene encoding the voltage-dependent sodium channel may be a
consequence of the alteration in calcium metabolism induced by cadmium [60], as occurs
following exposure to valproic acid, an antiepileptic that causes, in mammalian embryos,
defects in the closure of the neural tube [61]. Interestingly, similar damage is observed
in P. siculus embryos exposed to cadmium, suggesting a shared mechanism between cad-
mium and valproic acid, which may indeed involve a dysregulation of voltage gated
sodium channels.

3.4.2. γ-Aminobutyric Acid Type B Receptor

Metabotropic γ-aminobutyric acid type B receptors (GABABR) are G protein-coupled
inhibitory receptors widely distributed in the central and peripheral nervous system [62].
Their activation causes an inhibition of adenylate cyclase and calcium channels activities
and the opening of potassium channels in neuronal membranes. As with voltage-gated
sodium channels, GABA-B receptor signalling during mammalian embryogenesis is not
only crucial for modulation of nascent and mature synapses but is also involved in de-
velopmental processes such as neuronal migration and axon growth [63]. As observed
for the modulation of the voltage-gated sodium channel gene expression, exposure of
mammalian embryos to Cd ions and valproic acid shares the same final effects on the
nervous system [64], i.e., an increase in the activity on GABA-B receptors.

3.5. Immune Response
Lymphocyte Function Associated Antigen 3

The lymphocyte function-associated antigen 3 (LFA-3, also known as CD58) is a cell
adhesion molecule expressed, in human and other mammals, on the surface of hemopoietic
cells, dendritic cells, macrophages, endothelial cells, and erythrocytes in a transmembrane
and glycosylated form [65]. CD58 is a ligand for the CD2 glycoprotein, present on mem-
branes of T-cells and natural killer (NK) cells. It has been demonstrated that the CD58/CD2
interaction is important to activate the NK cell lytic activity and inflammatory cytokine pro-
duction [66]. Blockade of CD58 by anti-CD58 antibodies reduces inflammatory responses
and diminishes the recognition and cytolysis of target cells by cytotoxic T cells and NK
cells [67].

3.6. Cellular Detoxification
3.6.1. Metallothionein

Metallothionein (MT) is a low-molecular weight, cysteine-rich, metal-binding protein
that regulates metal homeostasis and detoxification by binding essential and non-essential
metal ions [68,69]; it is also involved in the immune response and in free radical scav-
enging [70–72]. MT gene expression is readily upregulated by exposure to heavy met-
als [73–76], providing a mechanism by which the metal can be sequestered in a relatively
inert, non-toxic state [77].

MT is expressed during the embryonic development of many vertebrates and per-
forms its detoxifying function by protecting embryos from toxic metals such as cad-
mium [7,78–80].

Under normal conditions, in P. siculus MT transcripts accumulate during oogene-
sis [81,82]; in embryos, in situ hybridizations elucidated the precise tissue distribution of
MT transcripts during the development [82], but failed to discriminate between maternal
and embryonic transcripts, making it difficult to determine when expression of the embry-
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onic MT gene begins. However, the same analyses show that at 40 days from oviposition
the embryonic gene is active in the brain and lungs; before hatching, at about 60 days of
development, the gene is also expressed in hepatic monocytes and in Kupffer cells [82].

Northern blot analysis demonstrates an appreciable increase in MT transcripts in
P. siculus embryos developed for 20 days in Cd-contaminated soil when compared with
control embryos, thus demonstrating the induction of embryonic MT gene expression by
heavy metals. In situ hybridization shows markedly increased localization of MT mRNA in
liver sinusoids and in the intestine [7]. However, this de novo expression of the MT gene is
not able to completely protect the embryo from damage induced by Cd; hence, as described
above, lizard embryos incubated in Cd contaminated soil show serious morphological
alterations [7].

3.6.2. Cold Stress-Responsive Genes in Podarcis Embryos

Temperature plays a pivotal role in the reproduction of heterothermic vertebrates [83].
It is responsible for the beginning of the breeding season by promoting the maturation of
oocytes, spermatogenesis and the predisposition of the animals to mating; in these ani-
mals, the temperature also controls the correct progression of the differentiation processes
underlying embryonic development. In heterotherms, a slight decrease in the incubation
temperature is quite tolerated and generally leads to a slowdown in development [84].
The increase in incubation temperature has more serious effects, leading in some cases to
embryonic lethality [85,86]. In reptiles, the incubation temperature of the egg can affect the
sex of the embryo [17].

Recently, it has been demonstrated that embryos of the lizard Podarcis muralis devel-
oping at a stressfully low (15 ◦C) incubation temperature expressed on average 20% less
total RNA than those incubated at the optimal temperature (24 ◦C), because of the lower
rates of transcription at cool temperature; approximately 50% of all transcripts showed
different rates of expression between the two incubation temperatures [87]. Changes in
expression profiles were found in genes involved in transcriptional and translational regu-
lation and chromatin remodelling, suggesting possible epigenetic mechanisms underlying
the acclimatization of developing embryos to a cool temperature.

In the lizard P. siculus even a slight increase in temperature (3 to 4 ◦C) leads to the
death of the embryo, regardless of the incubation period during which the heat shock
occurs [88]. P. siculus development is affected differently by cold shock. If the drop in
incubation temperature occurs at least 15 days after laying, the embryos are viable and in
the corresponding stage of development, but they show varying degrees of morphological
alterations; if the cold shock occurs in the early stages of development, from day 0 to
15 days after laying, development stops and the animal dies, as observed after the heat
shock [88]. It is noteworthy that the morphological changes observed following cold stress
(in particular, a five-day incubation at a temperature of 10 ◦C) are very similar to those
observed in embryos incubated in cadmium-contaminated soil. In fact, even in this case,
morphological alterations in the brain and eye are evident (breakage of the vesicular walls,
folding of the walls of the encephalic ventricles, hyperproliferation of the retinal layers);
the organs of the trunk region show oedema and haemorrhagic sites, while maintaining
normal morphology of the tissues [88].

A preliminary differential display analysis highlighted few changes in gene expression
between control and cold-shock embryos. Interestingly, the expression and localization of
the heat-shock protein HSP70, considered the primary member of the multigenic family
of proteins involved in protecting the cell from thermal shock (both heat and cold), are
the same in P. siculus embryos developed under the natural thermal regime or subjected
to a cold shock [88]. However, in non-mammalian vertebrates, another specific member
of the HSP family called HSP30 is induced in response to thermal shock, both during
embryogenesis and in adult cells [89,90]. The HSP70 in Podarcis embryos could represent a
constitutive molecular chaperone, while HSP30 could be a stress-inducible cytoprotective
protein. Unfortunately, the gene expression analyses carried out so far have not allowed us
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to identify the HSP30 of P. siculus, so it is not known whether the expression of this gene
can change following a thermal shock during P. siculus development.

Conversely, in lizard embryos incubated for five days at a temperature of 10 ◦C, the
gene encoding the Suppressor of Variegation 4-20 Homolog 1 (SUV4-20H1, also known as
KMT5B) undergoes a marked downregulation of expression, which cannot be explained
by the general slowing of transcription that is observed in heterothermic animals exposed
to a cold environment. The SUV4-20H1 gene encodes a methyltransferase methylating
the lysine in position 20 of the histone H4 [91]. It is well-established that DNA methy-
lation modulates the expression of genes associated with embryonic development and
aging [92,93]; alterations in DNA methylation occur frequently in many types of cancer [94].
Histone modifications are powerful regulators of cell cycle progression, DNA replication
and DNA damage repair, chromosomal stability, and cellular lineage specification [95].
Recently, it has been demonstrated that the histone H4 lysine 20 methylation plays a crucial
role in brain development [96]. In particular, the authors demonstrated that, during hu-
man development, KMT5B expression is positively correlated with neurogenesis, with the
highest levels up to the first 20 weeks, steadily declining until birth and beyond. Studies
on mice suggest a role for this gene in the maintenance of stem cell pools; it has been
hypothesised that KMT5B is involved in neurogenesis through maintenance of the neural
stem cell [96].

The evident morphological malformations observed in the brain of P. siculus embryos
incubated in a cold environment may be due to alterations in neurogenesis; in this context,
it is conceivable to assume that these alterations are partly a consequence of the inhibition
of the transcription of SUV4-20H1, leading to a lack of its regulatory effect on brain
development. This finding agrees with the DNA hypomethylation detected in the brains of
P. muralis lizards developed in a cold environment, i.e., 20 ◦C versus 24 ◦C, considered the
optimal incubation temperature for this species [97].

4. Conclusions

The stress-linked changes in gene expression observed in Podarcis lizards offer
transcriptome-level evidence of how terrestrial vertebrate embryos cope with stress, pro-
viding a key to use in population survival and environmental change studies. Indeed, a
better understanding of the genes/proteins that contribute to stress tolerance in different
types of organisms could facilitate methodologies and applications aimed at improving
organismal tolerance to unfavourable environments.

From this point of view, it is unfortunate that these studies in reptiles are very few, as
evidenced by the paucity of available literature. It would be interesting to prove that the
responses are reproducible among different taxa and different stress factors, i.e., that they
represent a shared program resulting from a long adaptation to environmental changes
and are now also engaged in counteracting the anthropic interferences.

In conclusion, the results collected here, which are far from exhaustive, allow us to
identify some stress-reactive genes and, consequently, the molecular pathways in which
these genes are involved. Cd-responsive genes encode proteins involved in cellular protec-
tion, metabolism and proliferation, membrane trafficking, protein interactions, neuronal
transmission and plasticity, immune response and transcription regulatory factors. The
latter in particular can generate a cascade response, which, in turn, is able to modify the
transcriptional or post-translational activity of many genes and proteins, respectively. A
similar effect appears to have changes in gene expression profiles induced by thermal stress.
Differences were found in genes involved in transcriptional and translational regulation
and chromatin remodelling. The inhibition of SUV4-20H1 methyltransferase expression
observed in P. siculus embryos falls within this context. The drop in histone methylation
could modify the epigenetic control of DNA, with consequent effects on the transcription of
other messengers, with a cascade mechanism, as demonstrated by the increasing number of
diseases caused by the dysregulation of post-translational modifications of histone proteins.
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