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Abstract
Explaining the evolutionary origin and maintenance of color polymorphisms is a major 
challenge in evolutionary biology. Such polymorphisms are commonly thought to re-
flect the existence of alternative behavioral or life-history strategies under negative 
frequency-dependent selection. The European common wall lizard Podarcis muralis 
exhibits a striking ventral color polymorphism that has been intensely studied and 
is often assumed to reflect alternative reproductive strategies, similar to the iconic 
“rock–paper–scissors” system described in the North American lizard Uta stansburi-
ana. However, available studies so far have ignored central aspects in the behavioral 
ecology of this species that are crucial to assess the existence of alternative repro-
ductive strategies. Here, we try to fill this gap by studying the social behavior, space 
use, and reproductive performance of lizards showing different color morphs, both in 
a free-ranging population from the eastern Pyrenees and in ten experimental meso-
cosm enclosures. In the natural population, we found no differences between morphs 
in site fidelity, space use, or male–female spatial overlap. Likewise, color morph was 
irrelevant to sociosexual behavior, space use, and reproductive success within ex-
perimental enclosures. Our results contradict the commonly held hypothesis that P. 
muralis morphs reflect alternative behavioral strategies, and suggest that we should 
instead turn our attention to alternative functional explanations.
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1  | INTRODUC TION

Explaining the maintenance of phenotypic variability over time 
remains a central question in evolutionary biology. Population 

polymorphisms are a particularly widespread form of pheno-
typic variability (Galeotti, Rubolini, Dunn, & Fasola, 2003; Gray 
& McKinnon, 2007; Mckinnon & Pierotti, 2010; Roulin, 2004; 
Svensson, 2017). In polymorphic populations, individuals of the 
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same sex and age may exhibit different phenotypes (e.g., color 
morphs) that are heritable, fixed in adults, and not condition-depen-
dent (Galeotti et al., 2003; Mckinnon & Pierotti, 2010; Roulin, 2004). 
Selectively neutral polymorphisms are expected to be lost eventu-
ally due to stochastic processes (i.e., genetic drift; Roulin, 2004), and 
the long-term maintenance of polymorphisms within a population 
requires some form of balancing selection, for example, via nonran-
dom mating, source–sink dynamics, overdominance, or rare morph 
advantage (Galeotti et al., 2003; Roulin & Bize, 2007; Roulin, 2004; 
Svensson, 2017; Wellenreuther, Svensson, & Hansson, 2014).

Sexual selection often plays a major role in the maintenance 
of color polymorphisms (Roulin & Bize, 2007; Wellenreuther 
et al., 2014). Discrete variation among conspecifics in behavior or 
life histories associated with reproduction (termed alternative re-
productive strategies, ARS) is frequently coupled with alternative 
color morphs (Ducrest, Keller, & Roulin, 2008; Roulin & Bize, 2007; 
Roulin, 2004; Shuster & Wade, 2003; Wellenreuther et al., 2014; 
Willink, Duryea, & Svensson, 2019; Zamudio & Sinervo, 2000). ARS 
are particularly frequent in males of polygynous (or polygynandrous) 
species, which experience a high variance in mating success and, 
thus, stronger sexual selection. In these species, the uneven distribu-
tion of fertilizations among males playing the conventional strategy 
allows the evolution of behavioral ARS (e.g., monogynist, satel-
lite, sneaker) adapted to exploit distinct mating niches (Greenfield 
& Shelly, 2008; Shuster, 2008; Shuster, Briggs, & Dennis, 2013; 
Shuster & Wade, 2003; Taborsky, Oliveira, & Brockmann, 2008; 
Waltz, 1982). Genetically fixed strategies are favored whenever 
males tend to experience only one selective regime during their life-
time, so that specializing in alternative resources has higher fitness 
than being a generalist (Brockmann, 2001; Roulin, 2004; Zamudio & 
Sinervo, 2003). For instance, certain characteristic of the environ-
ment (e.g., heterogeneous distribution of resources, short breeding 
season) can interact with aspects of the species' ecology (e.g., short 
life span, adaptive site fidelity) producing resource-defense mating 
systems (i.e., territoriality) in which subordinate males are unlikely 
to disperse. Males of such species tend to experience a single social 
environment during their lifetime, promoting the evolution of fixed, 
rather than conditional, behavioral strategies (Shuster & Wade, 2003; 
Zamudio & Sinervo, 2003). Balancing selection can maintain these 
alternative strategies, even if genetically fixed, whenever they ob-
tain equal average fitness across contexts. This can happen in a wide 
array of scenarios, such as marked seasonality or spatial environmen-
tal heterogeneity (Brockmann, 2001; Taborsky & Brockmann, 2010). 
In sympatry, ARS can obtain equal fitness through frequency-de-
pendent selection (Gross, 1996; Shuster & Wade, 2003; Taborsky 
et al., 2008). Occasionally, two or more strategies can cycle in 
frequency over time if presenting a lower frequency confers a fit-
ness advantage (negative frequency-dependent selection (NFDS; 
Brockmann, 2001; Roulin, 2004; Taborsky et al., 2008; Takahashi, 
Yoshimura, Morita, & Watanabe, 2010; Willink et al., 2019). Color 
polymorphism may participate of this evolutionary process and be 
maintained under two different conditions. On the one hand, al-
ternative color morphs may be directly selected for because of an 

adaptive advantage they confer in the context of ARS (e.g., sexual 
mimicry in damselflies; Svensson, Willink, Duryea, & Lancaster, 
2020; Willink et al., 2019). Alternatively, color morphs may be an 
indirect by-product of selection on other attributes related to the 
ARS (i.e., when genes involved in morphology, physiology, or behav-
ior have pleiotropic effects on color production; Galeotti et al., 2003; 
Roulin & Bize, 2007; Roulin, 2004, 2016; Wellenreuther et al., 2014).

One of the best-studied cases of color polymorphic ARS is the 
side-blotched lizard, Uta stansburiana. Adult males of this species 
present one of three alternative throat colors (blue, orange, and yel-
low), each of which is associated with different sociospatial behaviors. 
Orange-throated males establish large territories overlapping with 
several females by outcompeting blue-throated males in territorial 
disputes. These vast territories make orange males vulnerable to los-
ing fertilizations in favor of the nonterritorial yellow morph, which 
uses female mimicry to sneak copulations opportunistically. In turn, 
blue-throated males compensate their competitive disadvantage 
by guarding females directly and hence securing more fertilizations 
against the yellow sneaker males (Alonzo & Sinervo, 2001; Calsbeek 
& Sinervo, 2002a; Sinervo & Lively, 1996; Sinervo et al., 2006; 2007; 
Sinervo & Zamudio, 2001; Zamudio & Sinervo, 2000;). This dynamic 
gives rise to periodic oscillations in the relative frequencies of U. stans-
buriana male color morphs, in a cyclical “rock–paper–scissors” (RPS) 
game whereby each color morph, when predominant, is vulnerable to 
invasion by another color morph (Sinervo & Calsbeek, 2006; Sinervo 
& Lively, 1996). These results sparked a proliferation of studies aimed 
at detecting similar differences in reproductive behavior among the 
numerous species of lizards with color polymorphism (Bastiaans, 
Morinaga, Castañeda Gaytán, Marshall, & Sinervo, 2013; Fernández 
et al., 2018; Huyghe, Herrel, Adriaens, Tadić, & Van damme, 2009; 
Huyghe, Vanhooydonck, Herrel, Tadic, & Van Damme, 2007; Olsson, 
Healey, & Astheimer, 2007; Olsson, Stuart-Fox, & Ballen, 2013; San-
Jose, Peñalver-Alcázar, Milá, Gonzalez-Jimena, & Fitze, 2014; Yewers, 
Pryke, & Stuart-Fox, 2016; Yewers, Stuart-Fox, & Mclean, 2018). For 
a number of reasons, morph-specific ARS, morph fluctuations, and 
rock–paper–scissors dynamics similar to those described in Uta stans-
buriana have been predicted to occur in Eurasian lacertids, particularly 
in wall lizards (genus Podarcis, family Lacertidae; Sinervo et al., 2007; 
Calsbeek, Hasselquist, & Clobert, 2010; Mangiacotti et al., 2019). First, 
ventral color polymorphisms involving three alternative colors (i.e., or-
ange, white, and yellow) have been documented in adult individuals 
of at least 11 out of the 24 species currently recognized within the 
Podarcis genus, and is thus thought to have an ancestral origin (Andrade 
et al., 2019; Speybroeck, Beukema, Bok, Van der Voort, Velikov, 2016; 
Huyghe et al., 2007; Jamie & Meier, 2020; Pérez i de Lanuza, Bellati, 
Pellitteri-Rosa, Font, & Carretero, 2019; Runemark, Hansson, Pafilis, 
Valakos, & Svensson, 2010; Sacchi et al., 2007). Second, many of these 
species show high site fidelity, low interannual survival, and occupy 
habitats where resources relevant to reproduction (e.g., stone walls) 
are unevenly distributed (Barbault & Mou, 1988; Calsbeek et al., 2010; 
Carretero, 2007; Edsman, 1990, 2001; Font, Barbosa, Sampedro, 
& Carazo, 2012; Sinervo et al., 2007; Strijbosch, Bonnemayer, & 
Dietvorst, 1980). Third, males of many wall lizards experience strong 
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intrasexual competition, mainly in the contexts of territorial disputes 
and sperm competition. Females seem to be attracted to high-quality 
and/or familiar patches of habitat rather than to males with certain 
phenotypic characteristics (Edsman, 1990, 2001; Font, Barbosa, et al., 
2012). Moreover, behavioral observations and genetic analyses have 
confirmed that receptive females often mate with more than one male 
before oviposition, which results in a high incidence of multiple pater-
nity (Heathcote et al., 2016; Oppliger, Degen, John-Alder, & Bouteiller-
Reuter, 2007; Uller & Olsson, 2008). Consequently, adult males try to 
secure fertilizations by investing significant time and energy in the 
defense of territories offering resources valuable to females (such as 
basking spots, shelters, optimal egg-laying sites) against other males 
(Baird, 2013; Edsman, 1990; Font, Barbosa, et al., 2012). The outcome 
of this territorial disputes is crucial to male reproductive success, and 
patterns of shared paternity have often been found to reflect spatial 
and social dominance among males (MacGregor, Lewandowsky, et al., 
2017; MacGregor, While, et al., 2017; Oppliger et al., 2007; Uller & 
Olsson, 2008; While et al., 2015). For these reasons, alternative color 
morphs in many wall lizards are often believed to represent the visible 
mark of heritable ARS involving differential sociospatial behaviors in 
males (Andrade et al., 2019; Calsbeek et al., 2010; Huyghe et al., 2007; 
Pérez i de Lanuza, Carretero, & Font, 2017; Sinervo et al., 2007).

The European common wall lizard (Podarcis muralis) shows the 
widest distribution within the genus Podarcis, and many populations 

exhibit a striking color polymorphism (Speybroeck, Beukema, Bok, 
Van der Voort, and Velikov, 2016). Adults of both sexes may show 
up to five alternative ventral color morphs: three uniform (pure) 
morphs, that is, orange (O), white (W), and yellow (Y), and two in-
termediate mosaics combining orange and white (OW) or yellow 
and orange (YO) (Pérez i de Lanuza, Font, & Carazo, 2013; 2019; 
Figure 1). These color morphs are fixed at maturity (Pérez i de 
Lanuza et al., 2013), and recent research suggests that orange and 
yellow color expression is caused by recessive homozygosity at 
two separate loci in the regulatory regions of two genes associated 
with pterin (SPR) and carotenoid (BCO2) metabolism, respectively 
(Andrade et al., 2019). Interestingly, each of these morphs is found 
in geographically distant sublineages of the species thought to have 
diverged up to 2.5 million years ago (Andrade et al., 2019; Salvi, 
Harris, Kaliontzopoulou, Carretero, & Pinho, 2013; Figure S1). Local 
morph composition shows considerable geographical variation, 
although white ventral coloration is typically the most common 
(>50%), while the orange and especially the yellow morph rarely 
predominate. The yellow and yellow-orange morphs are often 
the most infrequent, and in Pyrenean populations, they seem to 
be geographically restricted to a subset of localities (<50%) char-
acterized by male-biased sex ratios and marked climatic season-
ality (Pérez i de Lanuza et al., 2017; Pérez i de Lanuza, Sillero, & 
Carretero, 2018).

F I G U R E  1   (a) Color variation in the 
ventral surface of adult Podarcis muralis 
lizards. (b) Close-up of an orange morph 
male showing UV-blue and black spots in 
its outer ventral scales (OVS)
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At least the pure morphs in P. muralis are often assumed to re-
flect alternative behavioral or life-history strategies (e.g., Calsbeek 
et al., 2010; Galeotti et al., 2010; Scali et al., 2013; Zajitschek, 
Zajitschek, Miles, & Clobert, 2012). The colors are indeed well 
suited to function as color signals. They are highly conspicuous 
to the species visual system and heritable, and their ventral posi-
tion allows the lizards to control their exposure through posture 
(Andrade et al., 2019; Pérez i de Lanuza, Carretero, & Font, 2016; 
Pérez i de Lanuza & Font, 2015, 2016). Moreover, the alternative 
colors show discrete variation and are chromatically discriminated 
as categorically distinct by conspecifics (Pérez i de Lanuza, Ábalos, 
Bartolomé, & Font, 2018; Pérez i de Lanuza et al., 2013), which 
makes them particularly suited to convey information about strat-
egy (Tibbetts, Mullen, & Dale, 2017). Research on P. muralis has 
revealed several differences in morphological, physiological, and 
behavioral traits across color morphs (e.g., Calsbeek et al., 2010; 
Galeotti et al., 2013; Pérez i de Lanuza & Carretero, 2018; Sacchi, 
Mangiacotti, Scali, Ghitti, & Zuffi, 2017; Scali et al., 2013; Zajitschek 
et al., 2012). However, there is no clear evidence that these cor-
related traits reflect morph-specific strategies, whether in the con-
text of sexual or natural selection. Furthermore, available studies 
have focused on morphology and physiology (Calsbeek et al., 2010; 
Galeotti et al., 2007, 2010; Galeotti, 2013; Pellitteri-Rosa, 2010; 
Sacchi, Mangiacotti, et al., 2017; Sacchi et al., 2007), while central 
aspects in the behavioral ecology of this species have received little 
attention (Abalos, Pérez i de Lanuza, Carazo, & Font, 2016; Pellitteri-
Rosa et al., 2017; Sacchi et al., 2015; Sacchi et al., 2009). In particular, 
the interaction between sociospatial behavior, reproductive success, 
and shared paternity is key to ascertain whether P. muralis color 

morphs obtain their fitness using alternative behavioral strategies 
during the breeding season. If behavioral ARS underlie color poly-
morphism in P. muralis, the alternative color morphs may show equal 
reproductive success but differential investment in social domi-
nance, territoriality, space use, and/or postcopulatory sexual behav-
ior (e.g., mate-guarding), which often translate into morph-biased 
patterns of cosiring and clutch monopolization (Formica, Gonser, 
Ramsay, & Tuttle, 2004; Sinervo & Lively, 1996; Sinervo, Miles, 
Frankino, Klukowski, & DeNardo, 2000; Zamudio & Sinervo, 2000). 
However, no previous study has investigated the alignment of poly-
morphic coloration, social behavior, and reproductive performance 
in sufficient detail to draw firm conclusions about the existence of 
behavioral ARS in P. muralis. To fill this gap, we monitored morph 
differences in spatial behavior in a free-ranging polymorphic popula-
tion from the eastern Pyrenees across a period of 5 years. We com-
plemented this with a mesocosm experiment using ten experimental 
populations with balanced sex ratio and morph frequencies to study 
the spatial and sociosexual behavior of P. muralis pure color morphs 
in a controlled environment. Our experimental design was aimed to 
detect behavioral differences in space use or social behavior among 
the color morphs, as well as morph differences in shared paternity, 
rather than frequency-dependent effects on morph fitness. For this 
reason, we introduced the morphs in equal frequencies to optimize 
our sample size of individual lizards representing each morph within 
the enclosures. Incidentally, as the balanced morph ratios employed 
are highly unlikely to occur in natural populations, this design also al-
lows us to test whether the higher prevalence of white morph lizards 
observed across the species distribution range results from some 
form of frequency-dependent fitness effect.

F I G U R E  2   Space use in a free-ranging population of P. muralis. (a) Photographic composition of a stone wall in Angoustrine. Roman 
numbers mark reference points for precision. (b and c) Schematic representations of the wall vertical surface used as home- (color shades, 
95% MCP) and core ranges (solid-line polygons, 50% MCP) by two females (b) and three males (c) during the breeding season of 2010. (d) 
Diagram of the linear home- and core range lengths estimated for each lizard as the width of the corresponding MCP (solid-lines = home 
range, color shades = core range). (e) Google Earth satellite image of the study site in Angoustrine (Map data: Institut Cartogràfic de 
Catalunya), with arithmetic center of each pure morph lizard core range during the period examined (367 lizards, 125 females, and 242 
males)
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2  | MATERIAL S AND METHODS

2.1 | Spatial behavior in a free-ranging population of 
Podarcis muralis

During the spring seasons of 2006–2010, we collected data on 
the activity and spatial behavior of a population of wall lizards in 
Angoustrine (42°28′43″N, 1°57′12″E), eastern Pyrenees. The study 
site (ca 140 × 500 m = 7 ha; Figure 2) consists of a series of abandoned 
terraced fields characterized by granite outcrops and old dry-stone 
walls partially covered in vegetation (see Font, Barbosa, et al., 2012). 
Lizards were mostly sighted perching on the stone walls, usually re-
maining within the boundaries of a single wall for the whole breeding 
season. In any particular year, lizards showing at least six resightings 
on the same wall were considered resident, while lizards showing five 
or fewer resightings and/or sighted at walls located more than 100 m 
apart were considered nonresident transients (Edsman, 1990). We 
only considered lizards measuring at least 56 mm from snout to vent 
(SVL), which ensures they had developed full-blown adult ventral col-
oration (Figure S2; Pérez i de Lanuza et al., 2013).

To examine potential intermorph differences in activity levels, 
for each lizard we counted the total number of sightings, the mean 
days elapsed between consecutive sightings, and the mean distance 
between consecutive sightings. As frequently done when a species' 
habitat is physically constrained (e.g., river fauna; Ahlers, Heske, 
Schooley, & Mitchell, 2010; Kornilev, Dodd, & Johnston, 2010; 
Kramer, 1995), we calculated a one-dimensional measure of home 
range size for each lizard inhabiting a particular stone wall. We op-
erationally defined the width of the 95% minimum convex polygon 
(MCP) encompassing the lizard's cluster of resightings on a stone wall 
as the lizard's linear home range size, and the width of the 50% MCP 
as the linear core range in which the animals were most frequently 
observed (Figure 2; Grassman, Tewes, Silvy, & Kreetiyutanont, 2005; 
Heupel, Simpfendorfer, & Hueter, 2004; Powell, 2000). To determine 
what fraction of male core ranges constitutes a territory (Maher & 
Lott, 1995), we defined the exclusive range of each male as the part 
of its core range that did not show overlap with the core range of any 
other male (i.e., territory; Kerr & Bull, 2006). Then, for each male with 
a reliable linear home range estimate (≥17 sightings; see Appendix S1) 
we measured spatial overlap by counting the number of resident fe-
males whose core ranges overlapped at least partially with either the 
home range, or the exclusive range of the focal male. To account for 
the vertical dimension of the lizards' home ranges, we also calculated 
the mean perching height of each resident lizard sighted.

2.2 | Mesocosm experiment

2.2.1 | Lizard capture and housing

We captured 190 lizards (100 females and 90 males) by noosing from 
12 polymorphic localities spread across the Cerdanya Valley (Eastern 
Pyrenees). In each of these localities, we captured 2–8 lizards 

(SVL ≥ 56 mm) showing each of the pure color morphs (O, W, Y) so as 
to avoid a geographical bias in our sample. No lizards were captured 
from populations lacking any of the pure color morphs. To ensure 
captured females were not gravid, we captured females at the end 
of the previous breeding season (September 2017), and transferred 
them to the Statión d’Ecologie Théorique et Expérimentale (SETE, 
Moulis, France). There, we housed females in groups of 3–5 coming 
from the same locality in outdoor circular plastic tanks (170 cm di-
ameter, 60 cm high), where they were kept under natural conditions 
for 130 days (Bestion, Teyssier, Aubret, Clobert, & Cote, 2014; Le 
Galliard, Ferriere, & Clobert, 2005). In May 2018, after an artificial 
hibernation period (see Appendix S1), we reinstalled the females in 
the outdoor tanks for 2 weeks while we captured the males.

2.2.2 | Morphometry

Two days before the onset of the experiment, we measured SVL 
(0.1 mm) and mass (±0.01 g) of each lizard with a ruler and a spring 
balance (Pesola, Schindellegi, Switzerland). Using a digital caliper 
(±0.01 mm; Mitutoyo, Telford, UK), we quantified interlimb length 
(ILL) in females, and two head measurements in males: length (HL) 
and width (HW) (Olsson, Shine, Wapstra, Ujvari, & Madsen, 2002). 
We also removed ~5 mm from the tail tip of each individual and pre-
served the tissue in 90% ethanol for genetic analyses.

2.2.3 | Experimental enclosures and egg incubation

To study social behavior and mating patterns in ten experimental 
populations of P. muralis, we released 180 lizards of either sex into ten 
experimental enclosures at the Metatron research facility (Caumont, 
France; Legrand et al., 2012). Within each of these enclosures, we 
created two types of sites that varied in structural complexity. Each 
site consisted of a wooden pallet (~1.2 m2) with differing number of 
bricks, cinderblocks, rocks, and logs piled above, which acted both 
as shelter and as basking sites (Figure S3.). We arranged high- and 
low-quality sites (respectively HQ and LQ) in two rows of three pal-
lets along the N-S axis, separated by a line of six rocks (which we also 
considered as LQ habitat) (MacGregor & While, et al., 2017). We then 
surrounded the area with a plastic barrier (70 cm high) to prevent any 
escapes or intrusions. In total, each experimental cell had 47 m2.

On 23 May 2018, we released nine males (3O:3W:3Y) within each 
of the enclosures (simultaneously and always from the southeast 
corner). We monitored male behavior (see below) for 7 days before 
releasing nine females (3O:3W:3Y) within each enclosure. Due to pos-
thibernation mortality, the white female morph was underrepresented 
in two of the ten experimental enclosures (5o:1w:3y). Prior to release, 
we marked each lizard permanently on the ventral scales using a dis-
posable medical cautery unit (Ekner, Sajkowska, Dudek, & Tryjanowski, 
2011) and drew a dorsal number with a toluene xylene-free permanent 
marker to facilitate individual recognition during behavioral observa-
tions (see Video S1 in the Appendix S1; Ferner & Plummer, 2016). To 
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minimize the noise introduced by size asymmetries and prior social 
interactions, we allowed a maximum SVL difference of 2 mm (with-
in-sexes) and only put lizards together in the same experimental enclo-
sure if they had been captured at least 300 m apart.

On 22 June, we released the males at their capture location (pre-
viously determined using a GPS device) and housed females individ-
ually in the laboratory until oviposition (see Appendix S1). We lost 
22 clutches due to females laying eggs before we retrieved them 
from the enclosures (12 females) or because they failed to produce 
a clutch (10 females). These lost clutches were evenly distributed 
across enclosures (χ2 = 14.667, p = .10) and female morphs (or-
ange = 8, white = 8, yellow = 6). For the remaining 68 females, we 
counted the number of fertile and infertile eggs within each clutch 
by noting the presence of a calcified shell and vascularization 48 hr 
after oviposition (Köhler, 2006). We incubated the resulting 230 

fertile eggs in plastic cups filled with moist coco husk (1:2 coco:wa-
ter by weight) and covered with a perforated lid at a constant tem-
perature of 28°C (Memmert GmbH + Co.KG incubator, Schwabach, 
Germany). Upon hatching, each of the 209 born juveniles was mea-
sured (SVL), weighted, sampled for DNA, permanently marked, and 
released at the outdoor tanks in the SETE Moulis. For 21 embryos 
that died before hatching, we obtained DNA samples via dissection 
of the eggs. Average clutch size was 5.57 ± 0.20 eggs, average fertil-
ization success (fertile eggs/clutch size) was 67%, and average hatch-
ing success (hatched/fertilized eggs) was 90%.

2.2.4 | Behavioral observations

From 23 May to 22 June, we conducted observations of spatial and 
social behavior at the natural peak activity hours for the lizards 
(9.30–14.30; 16.30–19.30), spacing consecutive visits to the same 
enclosure at least 1 hr and ensuring an even distribution of obser-
vations across the different time periods. Two researchers (JA and 
AB) recorded the identity, position, and behaviors of the lizards 
participating in social interactions using a behavior sampling rule 
in recording sessions lasting 40 min. A social interaction was con-
sidered to occur whenever a marked lizard in our visual range di-
rected any of the behaviors listed in Table 1 toward a conspecific. 
During interactions, we recorded the first occurrence of the be-
haviors performed by each lizard. Consecutive interactions involv-
ing the same lizards were recorded as different events whenever 
the participants remained further than 30 cm apart for longer than 
2 min. To ensure interobserver reliability, JA and AB collected be-
havioral data together for the first 6 days of the experiment (Cohen's 
kappa ± CI95% = 0.87 ± 0.05; Kaufman & Rosenthal, 2009). A third 
observer (OL) performed sequential rounds visiting all the enclo-
sures every 2.5 hr to collect data on the lizards' spatial behavior. 
Using scan sampling, we determined the identity and location of 
every lizard in sight on a scale map of the enclosure that included 
the six wooden pallets. Each enclosure was observed from a starting 
position located 1 m from the plastic barrier surrounding it for 5 min, 
and then walking around it (randomizing direction between consecu-
tive visits) to record lizards that were not visible from the starting 
position. To balance sampling effort across enclosures, scanning of a 
single enclosure was restricted to a maximum period of 15 min after 
the first lizard was spotted.

2.2.5 | Behavioral analyses

We classified the interactions according to their sociosexual con-
text into four types: intrasexual competitive and noncompetitive, 
and male–female reproductive and nonreproductive. Intrasexual in-
teractions were deemed competitive whenever one lizard (i.e., the 
loser) used fast-paced locomotion to flee from another lizard (i.e., the 
winner) showing display behavior and/or physical aggression (i.e., 
display, bite, or chase). In males, where competitive encounters were 

TA B L E  1   Partial ethogram used during behavioral observations 
to collect data on social interactions within the experimental 
enclosures

Behavior Description

Approacha  Movement toward a nonfleeing conspecific

Display Gular extension, back-arching, shoulders 
raised, head down, sagittal compression (any 
combination)

Bite One or more bites to another individual 
(excluding tail grab)

Retreata  Movement away from a nonchasing 
conspecific

Chase Rapidly following another FLEEING lizard

Flight Fast-paced movement to withdraw from a 
CHASING lizard

Foot shakes IIb  Sequence of front-leg waves in the air or onto 
the substrate

Tail grab A male bites the tail or inguinal region of a 
female. Often followed by copulation

Tail shake Shaking entire tail (or its posterior portion) 
swiftly from side to side

Mating Two lizards engage in copulation

Coperching Two or more lizards lying together in close 
vicinity (<15 cm; >30 s)

Cloacal drag Pulling body forward while keeping cloaca in 
contact with substrate

aWe classified the mode of locomotion used as either running (fast-
paced) or any other mode of locomotion (slow-paced). 
bPodarcis muralis lizards perform four types of foot shake displays 
(named I, IIa, IIb, and III; see Font et al., 2012 and references therein), of 
which two (IIa and IIb) are given in a social context. We only recorded 
these two types of foot shakes. Type IIa: rapid large amplitude vertical 
movements of front legs frequently performed by females in male–
female interactions (belly-down, head-up posture). Losers of male–male 
agonistic interactions often perform this type of foot shakes, which are 
hence considered in this context as submissive/appeasement displays 
(see Font & Desfilis, 2002; Aragón, López, & Martín, 2006 for details in 
other Podarcis lizards). Type IIb: Performed by males when approaching 
females (limbs extended, often displaying; Pérez i de Lanuza, Font, et 
al., 2016). 
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numerous, we used the R package BradleyTerry2 to fit a Bradley–
Terry model to the observed matrix of contest outcomes within each 
enclosure to obtain an individual index of social dominance for every 
male (further details in Abalos et al., 2016; Firth & Turner, 2012; 
Stuart-Fox, Firth, Moussalli, & Whiting, 2006). To examine potential 
nontransitive relations of dominance among male color morphs, we 
also fitted three logistic mixed models (one for each morph) on the 
contest outcome of heteromorphic encounters and tested whether 
the probability of winning against other morphs differed from even 
odds. Male–female interactions were classified as reproductive 
when the lizards engaged in sex-specific display behaviors (i.e., ♂: 
display; ♀: foot shakes, tail shake), copulatory behavior (i.e., tail grab, 
mating), or prolonged physical vicinity (i.e., coperching). To examine 
the effect of morph combination on the frequency of male–female 
reproductive interactions, we used social network analysis on the 
compiled version of SOCPROG (Whitehead, 2009) (Appendix S1).

Positional data were used to examine the putative effect of 
color morph on activity, space use and overlap with conspecifics. To 
account for habitat use within the enclosures, we estimated range 
areas by adjusting the smoothing factor in a fixed-kernel contour 
analysis until it matched the area of the 95% MCP (smoothing mul-
tiplier = 0.75, matrix cell number = 40; Kie, 2013; Row & Blouin-
Demers, 2006; MacGregor, Lewandowsky, et al., 2017; MacGregor, 
While, et al., 2017). Lizards with fewer than nine sightings (N = 3) 
were excluded from the analysis (see Appendix S1). For each lizard, 
we calculated range size and overlap with conspecifics both at the 
95% (home range) and at the 50% (core range) isopleth levels. Each 
lizard was assigned to a high- or low-quality site based on the posi-
tion where the 50% kernel estimate indicated peak density. Because 
of the high lizard density within the enclosures, male-exclusive areas 
were peripheral and uninformative, so we did not conduct further 
analyses on them. When calculating home range estimates, we ex-
cluded the positional data collected during the first 6 days of the 
experiment to allow for an acclimation period. All spatial analyses 
were conducted in Ranges 9 (Anatrack Ltd., UK; Kenward, Casey, 
Walls, & South, 2014).

2.2.6 | Parentage analyses

We isolated DNA from tail-tip samples using the DNeasy 96 Blood 
& Tissue Kit (Qiagen, Valencia, CA, USA), obtaining a final elution 
volume of 150 µl in AE buffer. We then combined the primers of 
six microsatellite loci described in P. muralis (Heathcote, Dawson, 
& Uller, 2014; Richard et al., 2012) into two different multiplexes 
(MPA: Pm16, Pm09, PmurC168; MPB: Pm19, Pm14, PmurC038) and 
ran standard PCR with 26 cycles and a final extension step of 30 min 
at 60°C. Forward primers were labeled with different fluorescent 
dyes (FAM, NED, HEX). Diluted PCR products (1:5) were genotyped 
together with an internal ladder (Red ROX-500) on an ABI 3130 
genetic analyzer (Applied Biosystems Inc.). One researcher (HL) 
scored the alleles for every adult and juvenile lizard in Geneious 
7.0.4 (Biomatters, available at http://www.genei ous.com), which 

we used to conduct parentage analysis in Cervus 3.0 (Kalinowski, 
Taper, & Marshall, 2007; Marshall, Slate, Kruuk, & Pemberton, 1998). 
We assigned paternity based on the log-likelihood statistic of each 
mother–father–offspring trio (LOD scores), using two confidence 
levels (strict: 95%, relaxed: 80%) and the nine males within each en-
closure as candidate fathers. Critical LOD scores were determined 
by running a simulation paternity analysis based on 100,000 off-
spring with known mothers and nine candidate fathers. We could 
reliably assign paternity to every offspring examined (strict: 209 ju-
veniles, relaxed: 229 juveniles).

To quantify individual fitness, we operationally defined two vari-
ables based on the results of the paternity analysis: mating success 
(i.e., the overall number of different mates with whom a lizard con-
ceived offspring) and reproductive success (i.e., the total number of 
embryos/hatchlings sired). Since selection will depend on relative 
rather than absolute fitness, we then divided the fitness measures of 
each lizard by the mean for all same-sex conspecific within its enclo-
sure. In addition, to evaluate intermorph differences in sperm com-
petition intensity, for each male we determined the average number 
of competitors with which he shared paternity of a clutch.

2.2.7 | Statistical analyses

We ran linear mixed models using the lme4 package (Bates, 2014) 
in R (R Core Team, 2019), and model selection was conducted using 
backward single-term deletions (p < .05) of the saturated model fol-
lowed by model comparisons via likelihood-ratio tests (at α = 0.05). 
All numerical variables were centered and scaled before running the 
models (Schielzeth, 2010). We checked that all response variables 
conformed to homoskedasticity and normality assumptions before 
assuming a Gaussian distribution in model fitting. For some variables 
that did not conform to these assumptions even after transforma-
tion, we fitted models using different distributions (Appendix S1).

2.2.8 | Power analysis

Using G*Power (Erdfelder, Faul, & Buchner, 1996) and the meth-
odology provided by Thalheimer and Cook (2002), we determined 
the effect size for an array of published morph differences de-
tected in U. stansburiana and other polymorphic lizards thought 
to present some form of ARS (Table S1). We then used G*Power 
to calculate the smallest effect size that our sample size from the 
free-ranging population allowed us to detect (sensitivity analysis), 
and the sample size required to detect biologically meaningful dif-
ferences among morphs in the mesocosm experiment (a priori re-
quired sample size). We chose the more conservative approach of 
conducting these a priori analyses in G*Power instead of by simula-
tion since this latter approach requires the researcher to directly 
determine estimates for both fixed and random effects, for which 
we had no previous reliable information (Green & Macleod, 2016). 
However, to better accommodate for the mixed-model statistical 

http://www.geneious.com


     |  10993ABALOS et AL.

design of our experiments, we additionally used the estimates 
obtained here to run a simulation-based analysis of power on the 
probability of detecting medium-sized (Cohen's d > 0.5) and large 
(Cohen's d > 0.8) effects with growing sample sizes (Haenlein & 
Kaplan, 2004; Hoenig & Heisey, 2001; O’Keefe, 2007). We cre-
ated two artificial LMMs using the simr package in R (Green & 
Macleod, 2016), one corresponding to the free-ranging population 
and another corresponding to the mesocosm experiment. In the 
former, we replicated the terms and parameters of the standard-
ized model exploring morph differences in home range size. In the 
latter, we replicated the terms and parameters of the standard-
ized model exploring morph differences in social dominance (see 
Appendix S1). Following Green and Macleod (2016), we then 
modified the standardized estimate for the morph factor (i.e., ef-
fect size) to either 0.5 or 0.8, and conducted a power analysis by 
running 1,000 simulations at 10 different levels of sample size 
(range = 5–50 lizards within each morph).

3  | RESULTS

3.1 | Spatial behavior in a free-ranging population of 
Podarcis muralis

In total, we accumulated 5,046 sightings of 472 different liz-
ards. Eighty-seven lizards were observed more than 1 year (maxi-
mum = 3 years, 21 lizards). Out of those, 76 (87.4%) were found 
on the same wall as the previous year, seven (8%) moved between 
neighboring walls, and only four (4.6%) changed to a nonadjoining 
wall between years. Only 181 males and 101 females were large 
enough (SVL ≥ 56 mm) to be included in the analyses about morph 
differences (Table S2). For each variable considered, we provide sep-
arate measures of centrality and dispersion for males and females in 
Table S3. Residents represented 59.6% of both adult male and female 
lizards, and no color morph was overrepresented among resident or 
transient lizards (GLMM (binomial): χ2 = 1.60, p = .81). Movements 
between walls were similarly frequent among color morphs (GLMM 
(gamma), χ2 = 2.80, p = .59). Color morphs did not differ in the total 
number of resightings accumulated, the mean days elapsed between 
consecutive resightings, or the mean distance between consecutive 
relocations (p > .28; see Table S4 for more details and effect size).

We could calculate reliable estimates of linear home- and core 
ranges for 83 lizards, but decided to exclude mixed-morph lizards 
from the analyses due to their scarcity. The final dataset consisted 
of 70 lizards: 18 females and 52 males with at least 17 resightings 
(Table S2). Neither sex showed significant differences in SVL among 
color morphs (LMM: χ2 = 6.61, p = .16). Males had both larger linear 
home ranges and core ranges than females, and also perched higher 
on the stone walls (p < .01; Table S4). Morphs did not differ in the 
size of their home- and core ranges, neither in males (LMM: home 
ranges: χ2 = 4.31, p = .19; core ranges: χ2 = 2.41, p = .30), nor in fe-
males (LMM: home ranges: χ2 = 0.44, p = .80; core ranges: χ2 = 3.09, 
p = .21). Similarly, mean perching height did not differ among color 

morphs (χ2 = 1.01, p = .60; Table S4). In males, we did not find signif-
icant intermorph differences in the number of females within their 
linear home- or core range (GLMM (gamma): χ2 < 1, p > .3). Likewise, 
males of different color morphs did not differ in the size of their ex-
clusive ranges (i.e., the fraction of core range that is not shared with 
any other male) or in the number of female core ranges partially in-
cluded within those ranges (p > .35; Table S4).

3.2 | Mesocosm experiment

3.2.1 | Morphology and color traits

None of the morphometric traits examined (reported to be under 
intrasexual selection in male wall lizards; Baird, 2013; Pérez i de 
Lanuza, Carazo, & Font, 2014; While et al., 2015) were found to 
differ among color morphs in our sample of experimental males 
(Table S5). In females, neither SVL nor ILL (both positively correlated 
with fecundity; Kratochvíl, Fokt, Rehák, & Frynta, 2003; Olsson 
et al., 2002) varied with color morph, but white morph females (be-
fore reproduction) were found to be significantly heavier than or-
ange females (Table S5).

3.2.2 | Spatial behavior

Overall, we accumulated 7,190 resightings of the marked lizards 
in 655 scan samplings. The total number of resightings per lizard 
differed significantly between sexes (males were resighted more 
often), but not among color morphs (GLMM (negative binomial): sex: 
χ2 = 57.11, p < .001; morph: χ2 = 0.81, p = .67). Likewise, we found a 
strong intersexual difference in the ability to settle in high- or low-
quality sites, but no intermorph difference (GLMM (binomial): sex: 
χ2 = 56.38, p < .001; morph: χ2 = 1.37, p = .50; Figure 3). In fact, even 
though lizards were evenly distributed among sites (HQ: N = 91, LQ: 
N = 89), females had three times higher odds of settling in HQ sites 
(OR = 3.26), whereas only highly dominant males managed to oc-
cupy HQ sites (Figure S4). Specifically, an increase of one SD in social 
dominance among males meant 4.5 times higher odds of settling in 
HQ sites (p < .001; Table S6). Males settled in HQ pallets did not dif-
fer in body size, weight, or head variables from males settled in LQ 
pallets (LMM: χ2 < 1, p > .2).

As expected, males had larger home- and core ranges than fe-
males, and lizards settling in HQ sites occupied smaller areas than 
lizards in LQ sites (LMM on k50: sex χ2 = 34.95, p < .001; pallet qual-
ity: χ2 = 7.64, p = .006). In males, variation in home- and core range 
size was significantly explained by social dominance (p < .001; Table 
S6), but not by color morph (p > .20; Table S6). In females, we found 
significant differences in home- and core range areas among female 
color morphs, with white morph females showing the largest areas 
(p < .001; Table S7). Male–female spatial overlap was not affected 
by color morph, but was significantly associated with site quality in 
both sexes (p < .01; Tables S6 and S7). Males established in HQ sites 
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overlapped with 3.0 ± 1.2 more females, and females established in 
LQ sites overlapped with 1.7 ± 1.0 more males.

3.2.3 | Intrasexual competition

We recorded 927 intrasexual interactions (614 in males and 384 
in females). Competitive interactions were more common among 
males (N = 543; 88% of total male–male interactions) than among 
females (N = 25; 7%), which were often observed in groups en-
gaged in prolonged coperching in the vicinity of a male (N = 338, 
88%). In males, display posturing and/or foot shakes (IIa, appease-
ment, Table 1) were observed in 60% of these competitive en-
counters, a third of them (36%) ended with a rapid chase/flight, 
and 16% involved physical aggression (i.e., bites). Display behav-
ior and bites were usually exhibited only by the winning lizard 
(display: N = 307, 91% only by winner; bite: N = 89, 70% only by 
winner), while foot shakes were almost exclusively performed 
by losing males (N = 70, 93% only by loser) with no differences 
among morphs (χ2 = 3.07, p = .22). No morph combination was 
overrepresented among these contests (χ2 = 5.63, p = .40). We 
found no evidence of an intermorph difference in the index of so-
cial dominance estimated from the Bradley–Terry model (p = .68; 
Table S6 and Figure 4). After dealing with pseudoreplication (200 
different pairs of rivals; Table S8), we found no effect of morph 
combination on the outcome of heteromorphic contests (GLMM 
(binomial): orange: χ2 = 0.33, p = .56; white: χ2 = 1.83, p = .18; yel-
low: χ2 = 0.88, p = .35). In fact, for either of the morphs involved 
in these combinations, the probability of winning did not differ 
significantly from even odds (Figure 4).

3.2.4 | Male–female interactions and parentage

In total, we recorded 1,230 male–female interactions, of which 
1,098 were deemed as reproductive because they involved the ex-
change of sex-specific behaviors (441), prolonged coperching (551), 
and/or copulatory behavior (153).

Male color morphs did not differ in the number of females with 
which they interacted, engaged in coperching, or engaged in cop-
ulatory behavior (p > .57; Table S9). Unsurprisingly, males settled 
in HQ sites engaged in reproductive interactions more frequently 
(LMM: χ2 = 36.91, p < .001) and with a higher number of females 
than males settled in LQ sites (p < .001; Table S9; Figure 5). We found 
no difference in relative reproductive success or relative mating suc-
cess among male color morphs (p > .19; Table S9). Males settled in 
HQ sites showed significantly higher relative reproductive success 
(p < .001), but not relative mating success (p = .107; Table S9). Sperm 
competition intensity faced by each individual male was also inde-
pendent of color morph (p = .56), but significantly higher in low-qual-
ity sites (p = .001; Table S9). No morph combination in male cosirings 
was more prevalent than expected by chance (χ2 = 2.13, p = .83; 
Table S10). Results from the analysis of male fitness are summarized 
in Figure 6.

Female color morphs did not vary in the number of males en-
countered in reproductive interactions, eggs produced, or fer-
tilization success (p > .11; Table S11). Body mass and ILL (but not 
color morph, p = .71) were significantly related to laying date, with 
heavier and longer females laying their clutches sooner than the rest 
(p = .014; Table S11). Although we found high levels of multiple pa-
ternity within the experimental enclosures (81% of clutches), female 
color morphs did not differ in the number of sires fathering offspring 

F I G U R E  3   Distribution of the lizards 
among high- and low-quality sites in the 
experimental enclosures. (a) Position of 
the peak density of resightings for each 
male and female (filled circles), plotted 
on a background schematic diagram of 
an experimental enclosure obtained by 
pooling together every resighting of a 
lizard collected during the experiment 
(gray squares). The orange, white, or 
yellow fill of the circles represents color 
morph. (b) Barplots showing the relative 
frequency of males and females of each 
color morph that settled in high- or low-
quality sites

(a)

(b)
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in their clutches (LMM: χ2 = 2.84, p = .24), nor in the number of viable 
juveniles conceived (LMM: χ2 = 4.31, p = .12). Relative measures of 
fitness yielded similar results (p > .16; Table S11). We found a sig-
nificant effect of habitat quality on some aspects of female social 
behavior and reproductive parameters: Females established in LQ 
sites interacted with a higher number of males showed higher levels 
of multiple paternity, and their clutches contained a smaller fraction 
of unfertilized eggs (p < .05; Table S11).

Parentage was significantly predicted across enclosures by both 
of the association networks based on social behavior during male–
female interactions (coperchings: χ2 = 51.91, p < .001; copulation 
attempts: χ2 = 45.40, p < .001). However, neither of the behavioral 
association networks nor the resulting parentage network were 
found to be affected by morph combination (coperchings: χ2 = 0.69, 
p = .69; copulation attempts: χ2 = 0.83, p = .83; parentage: χ2 = 0.32, 
p = .32; Figure 7). We found a significant interaction of the paren-
tal morph combination over juvenile body mass (LMM: χ2 = 12.91, 
p = .012). Splitting the dataset by female morph, we found that this 
result was exclusively driven by a nonsignificant tendency of yellow 
males to sire heavier offspring than orange males when coupled with 
white females (LMM: χ2 = 6.28, p = .09). We found no effect of male 
or female morph alone on juvenile mass (LMM: χ2 < 1, p > .5).

3.2.5 | Power analysis

The sensitivity analysis in G*Power estimated a minimum detectable 
effect size of Cohen's d = 0.46 (N = 181) and Cohen's d = 0.88 (N = 52) 
for activity and space use differences (respectively) between male color 
morphs in the free-ranging population. For the mesocosm experiment, 
we estimated that a sample size of 90 males and females would allow 
us to detect medium-sized (Cohen's d = 0.66) intrasexual differences 
in behavior and fitness among color morphs with a standard statistical 
power of 0.80. These effect sizes are at the lower end of the range 

of effect sizes (Cohen's d = 0.49–2.32), which we calculated from the 
literature (Table S1), suggesting that we had enough statistical power 
to detect even subtle but biologically meaningful differences among 
morphs. Accordingly, results from the two simulation-based analyses 
of power showed that our sample sizes were high enough to detect 
biologically relevant differences among color morphs (power > 0.80 to 
detect medium-sized and large effect sizes). In fact, introducing the ob-
served coefficients for the fixed and random factors in the simulations 
and plotting the expected increment in power at different sample sizes 
revealed a higher statistical power for the data presented here than the 
more conservative estimates obtained in G*Power (Figure S5).

4  | DISCUSSION

Overall, our results from both a longitudinal field study and an en-
closure experiment argue against the hypothesis that P. muralis color 
morphs reflect alternative reproductive strategies (ARS) involving 
differential sociosexual behavior and space use. In territorial spe-
cies such as Podarcis lizards, resource-holding potential, spatial be-
havior, and activity are expected to vary across males employing 
alternative strategies (Calsbeek & Sinervo, 2002a, 2002b; Molnár, 
Bajer, Szövényi, Török, & Herczeg, 2016; Noble, Wechmann, Keogh, 
& Whiting, 2013; Sinervo et al., 2000; Sinervo & Svensson, 2002; 
Sinervo & Zamudio, 2001; Zamudio & Sinervo, 2000). In this study, 
we did not find any evidence that color morphs differ in resource-
holding potential (i.e., social dominance, agonistic behavior, terri-
toriality), space use (i.e., site fidelity, home range size, overlap with 
conspecifics), or activity (i.e., frequency of resightings, distance be-
tween consecutive resightings).

No color morph was overrepresented among resident or transient 
lizards in the field, and we did not observe differences in either inter-
morph resighting propensity, distance between consecutive resight-
ings, or interannual site fidelity. Furthermore, color morphs showed 

F I G U R E  4   Male–male competitive interactions. (a) Boxplot of social dominance by color morph. Boxes indicate the interquartile range 
(IQR, 50% of data). Horizontal lines represent the median, and bars extend to 1.5 times the IQR. A jittered dot cloud shows the value of the 
variable of interest for each lizard in our dataset. (b) Mean plot showing the probability of winning for each morph combination according to 
the predicted values of the logistic mixed models. Bars extend to the CI95%. The horizontal dotted line marks 50% probability
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similar home range size and male–female overlap both in natural 
conditions and in experimental enclosures. In both sexes, alternative 
color morphs obtained similar relative fitness within the enclosures 
(which would be necessary for their maintenance over time), but cru-
cially, this was not associated with different behavioral strategies. 
In line with previous evidence on the behavioral ecology of territo-
rial lizards (Baird, 2013; Baird, Timanus, & Sloan, 2003), males com-
peted fiercely to settle in high-quality sites irrespective of their color 
morph, and the subset of successful dominant males (23%) engaged 

in coperching with a higher number of females, experienced signifi-
cantly lower levels of sperm competition, and ultimately achieved 
higher reproductive success. In sum, while lizards were strongly at-
tracted to high-quality sites (both in the field and in the mesocosm 
experiment), we did not find any evidence that color morph played 
a role in securing access to them or in the ability to exclude other 
conspecifics from its use. In fact, we did not find an effect of color 
morph on the outcome of male–male competitive interactions. These 
results contrast previous evidence suggesting lower fighting ability 

F I G U R E  5   Variation in the number of different females with which males engaged in either coperching (a) or copulatory behavior (b, 
copulation and tail grabs). Males settled in high-quality pallets interacted with a significantly higher number of individual females, while male 
color morphs did not differ in sociosexual behavior. Bars extend to the CI95%

F I G U R E  6   Variation in male individual fitness among alternative color morphs (up) and between sites of different quality (below). Bars 
extend to the CI95%. Significant differences are marked with an asterisk (p < .001)
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in orange morph males during laboratory-staged encounters (Abalos 
et al., 2016), likely because any differences between size-matched 
morphs meeting at a neutral arena are overridden by the effect of size 
asymmetries and residency status when confrontations occur under 
more natural conditions (Stuart-Fox & Johnston, 2005). Similarly, 
Sacchi et al. (2009) reported no effect of color morph on aggressive 
behavior during laboratory-staged contests when the experimental 
design allowed for size and residency asymmetries. Previous studies 
have reported larger body sizes in orange morph lizards with respect 
to white (Calsbeek et al., 2010; Sacchi et al., 2007), with some au-
thors suggesting an advantage of orange morph lizards in male–male 
competition for preferred territories and hence reproductive success 
(Calsbeek et al., 2010). The size difference, however, may result from 
miscategorizing subadult lizards as pertaining to the white morph 
(i.e., the lizards' ventral surface appears white to the human eye be-
fore achieving sexual maturity), leading to the conflation of any pos-
sible morph difference with the expected size asymmetry between 
younger and older lizards. For instance, orange morph lizards from 
our study population in Angoustrine are only 1.7 ± 0.3 mm larger than 
white morph lizards in the free-ranging population of Angoustrine 
(1942 adult SVL > 56 mm lizards), which represents a 2.6% of the 
average SVL in adult lizards. There is, in fact, no evidence for bio-
logically relevant differences among male P. muralis morphs neither 
in morphology or sex-specific coloration (i.e., UV-blue ventrolateral 
spots; Pérez i de Lanuza et al., 2014), and in this study, we did not 
observe differential use of agonistic behaviors during intrasexual 
competitive interactions.

The existence of ARS in a polymorphic territorial species does 
not necessarily imply that color morphs must differ in territoriality 

or aggressive behavior (Shuster & Wade, 2003). ARS in males of 
polygynandrous species are often expressed as differential sex-
ual behaviors (e.g., mate-guarding) or physiological adaptations 
(e.g., increased testis size) representing alternative solutions to the 
trade-off between securing fertilizations and acquiring new mates 
(Formica et al., 2004; Shuster, 2008; Taborsky, 2001; Taborsky & 
Brockmann, 2010). For example, in the Australian painted dragon 
(Ctenophorus pictus), yellow morph males have larger testis and 
strongly outperform orange males in laboratory-staged sperm com-
petition trials, despite the absence of differential territory-acquisi-
tion abilities between both morphs (Healey & Olsson, 2008; Olsson, 
Schwartz, Uller, & Healey, 2009). In contrast, P. muralis male morphs 
within experimental enclosures showed similar time allocation be-
tween guarding females and acquiring new mates, and no difference 
in the number of mates sired, and experienced similar levels of sperm 
competition. In U. stansburiana, the interplay between the usurper, 
guarding, and sneaker strategies leads to morph-biased patterns of 
shared paternity, with yellow sneaker males obtaining almost all of 
their reproductive success from cosiring clutches with orange males, 
while blue guarding males show low overall levels of cosiring (es-
pecially with yellow males; Sinervo & Zamudio, 2001; Zamudio & 
Sinervo, 2000). Here, we found no evidence of a similar bias, with 
no morph combination in cosired clutches being more prevalent 
than expected by random association. In fact, given the absence of 
differences in precopulatory behavior, the similar reproductive suc-
cess achieved by males of the three color morphs indirectly argues 
against the existence of physiological adaptations in the context of 
postcopulatory sexual selection (e.g., larger testis and ejaculates, 
which would have biased paternity in the absence of differential 

F I G U R E  7   Example network diagrams from one of our experimental enclosures based on (a) coperching pairs, (b) copulatory behavior 
(i.e., interactions involving tail grabs and/or matings), and (c) the resulting parentage network. Each node represents an individual lizard, 
with shape and color denoting sex and color morph, respectively. Alphanumeric codes within the nodes correspond to the unique ID of each 
lizard within the enclosure. The thickness of the lines connecting nodes characterizes the number of social interactions (a, b) or offspring 
(c) between each dyad of lizards. Unconnected nodes represent lizards that we did not observe to engage in coperching or copulatory 
behaviors (a, b), or did not reproduce (c)
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social behavior). Further research could directly address this ques-
tion by studying reproductive physiology in P. muralis color morphs 
and staging realistic sperm competition trials across morphs.

While most research on color polymorphism and ARS concerns 
males, females are also often polymorphic. Differential female 
breeding strategies, such as the different solutions to the trade-
off between egg size and number described in the female color 
morphs of U. stansburiana (Alonzo & Sinervo, 2001), have also been 
suggested to occur in P. muralis. One study of an Italian population 
found that, in captivity, yellow females laid relatively larger clutches 
of smaller eggs than white morph females (Galeotti et al., 2013). Our 
results also contradict this hypothesis, as we found no difference 
among female morphs in clutch size or juvenile mass. Unexpectedly, 
white morph females roamed across larger areas than females from 
the other morphs. Rather than alternative strategies in space use, 
we think this difference may result from white morph females being 
heavier (and likely more advanced in their ovarian cycle) when re-
leased into the enclosures. This could have prompted exploratory 
behavior in the search for suitable egg-laying sites earlier in this 
morph. Whether this unexpected result is artefactual or derives 
from differences in the timing of reproduction among female morphs 
should be examined in future studies. Overall, our results constitute 
strong evidence against the existence of ARS concerning male–male 
aggression, spatial dominance, sexual behavior, or breeding strategy 
in P. muralis color morphs.

Even if color morphs do not reflect ARS, nonrandom mating with 
respect to color can contribute to the stability of polymorphic sys-
tems over time (Galeotti et al., 2003; Roulin, 2004; Wellenreuther 
et al., 2014). Mate preferences may vary among individuals if the 
expected benefits derived from mating with differently colored indi-
viduals are a function of the chooser's morph (e.g., genetic compat-
ibility) or vary relative to other factors (e.g., time, space, population 
density; Mckinnon & Pierotti, 2010; Roulin, 2004; Wellenreuther 
et al., 2014). In polymorphic Pyrenean populations of P. muralis, ho-
momorphic pairs of males and females occur more frequently than 
heteromorphic pairs, irrespective of local morph diversity (Pérez i de 
Lanuza et al., 2013; Pérez i de Lanuza, Font, & Carretero, 2016). This 
assortative pairing suggests a role of color morph in mate choice, but 
is not sufficient to demonstrate its existence (Roulin & Bize, 2007; 
Roulin, 2004; Wellenreuther et al., 2014). In fact, color-assortative 
pairing can also occur in the absence of mate choice, for example, if 
phenotypically similar lizards tend to cluster together within popula-
tions as a consequence of similar environmental constraints or pop-
ulation viscosity (Roulin, 2004; Wellenreuther et al., 2014). Here, we 
did not find evidence of morph assortativity in the male–female so-
cial interactions observed within the enclosures. Previous research 
using laboratory-staged mate choice trials has already reported the 
absence of color-assortative preferences toward differently colored 
males in P. muralis females (Sacchi et al., 2015). However, we think 
that our results constitute a more realistic perspective of male–fe-
male dynamics in nature, since mounting evidence suggests that the 
initiation and outcome of precopulatory male–female interactions in 
lizards are almost completely under male control (Andrews, 1985; 

Heathcote et al., 2016; Noble & Bradley, 1933; Olsson, 2001; Olsson 
& Madsen, 1995; Olsson et al., 2013; Tokarz, 1995). Following our re-
sults, we deem unlikely that the color-assortative pattern observed 
in the wild (>60% of pairings at our study site; see Pérez i de Lanuza 
et al., 2013) results from the lizards actively choosing to pair with 
similarly colored partners. Rather, assortative pairing could result 
indirectly from some form of clustering in the spatial distribution of 
color morphs in natural populations, due to population viscosity or 
ecophysiological constraints (Lindsay et al., 2019; Pérez i de Lanuza, 
Sillero, et al., 2018; Svensson, 2017; Svensson, Abbott, Gosden, & 
Coreau, 2009; Wellenreuther et al., 2014).

Our results also offer evidence against the existence of strong 
frequency-dependent effects on morph fitness. As stated before, 
by introducing the color morphs in equal frequencies within the 
enclosures we simulated a situation that is rarely observed in any 
of the different P. muralis lineages showing color polymorphism. 
Such balanced morph frequencies were never observed in natural 
populations from eastern Pyrenees (examined in Pérez i de Lanuza 
et al., 2017, Pérez i de Lanuza, Sillero, et al., 2018, N = 116 localities), 
where white morph lizards usually predomínate (e.g., morph fre-
quency ranges: orange = 0%–60%; white = 27%–92%; yellow = 0%–
25%; orange-white = 0%–27%; yellow-orange = 0%–13%), and only 
3.45% of the localities show a morph other than white as the most 
common. Additionally, morph frequencies do not seem to expe-
rience substantial interannual variation, with the same rank order 
being maintained in the study population of Angoustrine for the last 
6 years (Figure S1). If color morphs are, in fact, under some form of 
frequency-dependent selection, the frequencies observed in natural 
populations may reflect a selective equilibrium where each morph 
obtains equal average fitness. By using a 1:1:1 morph ratio in our 
experimental setup, we simulated a displacement from such equilib-
rium frequencies, which should have resulted in a selective pullback, 
and hence higher fitness in white morph lizards (Roulin, 2004; San-
Jose et al., 2014; Sinervo et al., 2007; Svensson, 2017). In contrast, 
we did not find significant differences in fitness among color morphs, 
suggesting that strong frequency-dependent effects on morph 
fitness are unlikely to be the prime determinant of morph relative 
frequencies in P. muralis natural populations. This study is primarily 
aimed at detecting differences in sociosexual behavior among male 
morphs, and we acknowledge that our experimental design is not 
tailored to test for frequency-dependent effects on fitness. In fact, 
testing for a rare (NFDS) or a common morph advantage with a me-
socosm design would require to introduce each morph consistently 
in lower or higher frequency across the enclosures (Roulin, 2004; 
Svensson, 2017; Wellenreuther et al., 2014). Additionally, selection 
on color morphs is often dependent on both biotic (demography, 
sex ratio) and abiotic factors (environmental conditions), as well 
as on the population morph composition and relative morph fre-
quencies (Forsman, Ahnesjö, Caesar, & Karlsson, 2008; Gosden & 
Svensson, 2008, 2009; McLean & Stuart-Fox, 2014; McLean, Stuart-
fox, & Moussalli, 2015; Svensson, 2017; Svensson et al., 2020; Willink 
et al., 2019). Future studies should examine the environmental de-
pendence of morph fitness in populations characterized by extreme 
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morph compositions and socioecological contexts (i.e., varying sex 
ratio, density, and environmental conditions), for example, by com-
bining field observations with the experimental alteration of these 
same parameters in enclosure experiments.

The maintenance of color polymorphism may be possible through 
genetic mechanisms entirely independent of sociosexual behavior. 
For instance, if heterozygosity at genes coding for color polymor-
phism provides fitness benefits (i.e., overdominance), and the advan-
tages of heterozygosity only concern viability selection (e.g., survival 
to adulthood), color morphs would be maintained in the population 
even if morphs mated at random (Krüger, Lindström, & Amos, 2001; 
Roulin & Bize, 2007; Roulin, 2004; Wellenreuther et al., 2014). In 
a breeding experiment conducted on captive P. muralis lizards from 
Italian polymorphic populations, morph pair combination was found 
to affect fertilization success, hatching success and newborn qual-
ity (i.e., juvenile mass; Galeotti et al., 2013). Here, we found a weak 
effect of color morph combination on juvenile mass, but the low 
sample size (N = 44) is insufficient to draw firm conclusions. To ex-
amine the role of genetic compatibility and overdominance on sta-
bilizing color polymorphism in future research, we would need to 
estimate juvenile fitness and interannual survival at the genotypic 
(rather than the phenotypic) level, as the fitter heterozygotes could 
be phenotypically indistinguishable from other genotypes (Gratten 
et al., 2008; Johnston et al., 2013; Tregenza & Wedell, 2000).

Despite drawing substantial interest from evolutionary biolo-
gists, the evolutionary causes and consequences of lacertid color 
polymorphisms are still poorly understood. Alternative reproductive 
strategies have been suggested to occur in the Dalmatian wall liz-
ard (Podarcis melisellensis), where orange males have been found to 
present larger body size, disproportionately large heads, and higher 
fighting ability in size-matched contests staged in the laboratory 
(Huyghe et al., 2007, 2009; Huyghe, Vanhooydonck, Herrel, Tadić, 
& Van Damme, 2012). In contrast, in the European common lizard 
(Zootoca vivipara), interpopulation differences in morph composi-
tion and rapid morph cycles have been explained by the cumulative 
effect of two frequency-dependent mechanisms starkly different 
from ARS (morph-biased female mate choice and offspring survival; 
San-Jose et al., 2014; Sinervo et al., 2007). Meanwhile, differences 
in morph composition among island populations of the Skyros wall 
lizard (Podarcis gaigeae) have been found to be fall within that ex-
pected under neutral genetic divergence, and genetic drift could 
thus not be rejected as an explanation of the pattern (Runemark 
et al., 2010). Lastly, most of the evidence suggesting the existence 
of physiological or behavioral morph differences in P. muralis comes 
from studies conducted on the southern Alps sublineage (Galeotti, 
2013; Sacchi, Mangiacotti, et al., 2017; Sacchi, Scali, et al., 2017; 
Galeotti et al., 2007; Scali et al., 2016), which is only distantly re-
lated to the western European lineage found in Pyrenees (Gassert 
et al., 2013; Giovannotti, Nisi-Cerioni, & Caputo, 2010; Schulte, 
Gassert, Geniez, Veith, & Hochkirch, 2012). These observations, 
together with the high prevalence and ancient origin of color poly-
morphisms in wall lizards (Andrade et al., 2019; Arnold, Arribas, 
& Carranza, 2007; Jamie & Meier, 2020), suggest the intriguing 

possibility that genes coding for the expression of the alternative 
color morphs might become linked to genes that influence other 
functionally relevant traits (i.e., physiology, behavior, life history, de-
velopment) only at times, and hence be under selection only in some 
environments or in some lineages (i.e., Podarcis species). Linkage 
disequilibria are expected to decay rapidly if not counteracted by 
strong and chronic correlational selection, and genetic drift is very 
effective in leading to the loss of polymorphism (especially in small 
populations; Gray & McKinnon, 2007; Mckinnon & Pierotti, 2010; 
Sinervo & Svensson, 2002; Svensson, 2017). Hence, this evolution-
ary scenario would cause correlations between color and other 
phenotypic traits to vary either in space or in time, and even lead 
to morph loss in some populations or lineages. Polymorphism loss 
has likely occurred in wall lizards. Despite their putative ancestral 
origin (Andrade et al., 2019), color morphs are apparently absent in 
some Podarcis species (Speybroeck et al., 2016), and the polymor-
phic species that have been examined often show marked geograph-
ical variation in morph diversity (Jamie & Meier, 2020; MacGregor, 
Lewandowsky, et al., 2017; Pérez i de Lanuza, Sillero, et al., 2018; 
Runemark et al., 2010). However, due to its high genetic diversity, 
effective population sizes in P. muralis (and likely in other wall liz-
ards) have been estimated to be sufficiently large (Ne > 4 × 106; 
Yang et al., 2020) to allow for the long-term persistence of a largely 
neutral trait under intermittent selection contingent on the envi-
ronment. Local morph extinctions could thus be counteracted by 
immigration from larger populations where selectively neutral color 
expression could resist the eroding effect of genetic drift for lon-
ger periods, and interpopulation differences in morph composition 
would be mainly driven by the environmental and genetic con-
straints of color expression (Gray & McKinnon, 2007; Mckinnon & 
Pierotti, 2010; Roulin et al., 2004). Recent results showing the re-
cessive genetic basis of orange and yellow ventral coloration in P. 
muralis with respect to white (Andrade et al., 2019) could provide 
a simple explanation for the marked bias toward the white morph 
observed in natural populations (Pérez i de Lanuza et al., 2017, Pérez 
i de Lanuza, Ábalos, et al., 2018, Pérez i de Lanuza et al., 2019; Figure 
S1). Future research should investigate the possibility of spatially or 
temporally varying correlations between polymorphic color expres-
sion and other phenotypic differences in Podarcis lizards, as well as 
evaluate the relative importance of selection and genetic drift in 
shaping interpopulation differences in morph composition and rel-
ative frequencies (Runemark et al., 2010).

In conclusion, our results do not warrant the frequent assump-
tion that behavioral ARS underlie the maintenance of ventral color 
morphs in the European common wall lizard. In the wake of the U. 
stansburiana model, much effort has been devoted to detect inter-
morph differences suggestive of behavioral ARS in polymorphic 
lizards (Calsbeek et al., 2010; Fernández et al., 2018; Healey, Uller, 
& Olsson, 2007; Yewers et al., 2016). However, these studies have 
often painted a much more complex picture involving several evo-
lutionary processes, of which ARS may represent but one in many 
mechanisms explaining the vast diversity of lizard color polymor-
phisms (Carpenter, 1995; Huyghe et al., 2012; McLean et al., 2015; 
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San-Jose et al., 2014). We should therefore reassess the allegedly 
central role of ARS in explaining the maintenance of phenotypic vari-
ability in nature, and broaden the perspective to incorporate other 
hitherto overlooked processes.
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