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 Introduction

The ability of the nervous system to synthesize steroids
as originally discovered in mammals [1–3] and then
tended to other vertebrates, including fish, amphibians,
d birds [4–9]. This suggests that neurosteroidogenesis is

conserved property in vertebrates.
Many studies have revealed the important roles of the

tential of neurosteroids in the mediation of several brain

functions, including sexual differentiation and reproductive
behavior [8,10]. Among the different enzymes involved in
neurosteroid synthesis, a prominent role is played by
cytochrome P450 aromatase (P450 aro), the key enzyme
in the estrogen synthetic pathway, which irreversibly
converts testosterone into estradiol. Aromatase is a member
of the P450 cytochrome family encoded by the gene cyp19
[11]. Aromatase has been found in the brain of all vertebrates,
from fish to mammals [12,13]. In fish, the localization of P450
aro has been described in the central nervous system of
Atlantic halibut [14], Protandrous (black porgy fish) [15],
plainfin midshipman [16], zebrafish [9,17,18], rainbow trout
[19], pejerrey fish [20], and killifish [21]. Among amphibians,
the brain expression of P450 aro mRNA is already detectable
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A B S T R A C T

The purpose of the present study is to highlight the role of aromatase in the neuroendocrine

control of the reproductive cycle of the male lizard Podarcis sicula during the three significant

phases, i.e. the pre-reproductive, reproductive, and post-reproductive stages. Using

immunohistochemical, biochemical, and hormonal tools, we have determined the localization

and the activity of P450 aromatase (P450 aro) in the lizard’s brain together with the

determination of hormonal profile of sex steroids, i.e. testosterone and 17b-estradiol. The

present data demonstrated that the localization of P450 is shown in brain regions involved in

the regulation of the reproductive behavior (medial septum, preoptic area, and hypothala-

mus). Its activity, as well as the intensity of the signal, is modified according to the period of

reproduction, resulting in functional dynamic changes. P450 aro activity and signal intensity

decrease in the pre-reproductive period and progressively increase during the reproductive

stage until it reaches the maximum peak level at the post-reproductive phase. P450 aro

determines a local estrogen synthesis, balancing the testosterone and estradiol levels, and

therefore its role is crucial, since it plays an important role in the neuroendocrine/behavioral

regulation of the reproductive processes in the male lizard P. sicula.
�C 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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 the early developmental stages of Xenopus laevis [22,23]
nd Pleurodeles waltl [24], and it is highly expressed until
etamorphosis. A detailed description of the anatomical

istribution of aromatase enzyme is reported by Burrone
t al. [25] in the brain of Pelophylax esculentus. In this species,
ex-specific expression of the P450 aro gene has also been
bserved in the brain [26]. Furthermore, brain aromatase has
een investigated in turtles [27,28], snakes [27], and two
pecies of lizard (Anolis carolinensis and Cnemidophorus

niparens) [29–31].
In some vertebrates, brain aromatase has emerged as a

otential factor contributing to the activation of sex-
pical behavior (for reviews, see [12,32–34]). In the quail,

ypothalamic aromatase modulates testosterone-induced
ggressiveness by regulating the amount of estradiol
vailable for receptor binding [13,35]. In songbirds,
strogens can organize and activate masculine neural
ircuits, such as those involved in vocalization [12]. How-
ver, the estrogens are assumed to possess the functional
roperties of neuromodulators, coordinating a variety of
orphological, physiological and behavioral traits re-

uired for reproductive success [10]. At least in terms of
ale sexual behavior, brain estrogens appear to have a
rger role in the rat and the mouse [13,32].

Birds and mammals both evolved from reptilian ancestors
6,37]; therefore, investigations on reptiles could elucidate
e evolution of mechanisms regulating reproduction [38]. In
is study, we investigate the distribution and activity of

450 aro in the brain of the adult male lizard (Podarcis sicula)
gether with the hormonal profile of sex steroids, testoster-

ne, and 17b-estradiol during significant phases of the
eproductive cycle. This species, being a seasonal breeder,
rovides a useful model to better understand the relationship
etween brain sex hormones levels and the phases of
eproduction. Moreover, we have also recently investigated

e localization and expression of P450 aro in the testis of
. sicula, discovering that it has a significant influence in the
ontrol of steroidogenesis and spermatogenesis [39], as in
e other enzymes involved in steroidogenesis [40]. The
calization of P450 aro in the Podarcis brain and the
ormonal profile of testosterone and 17b-estradiol could
nderline the relevance of neural steroidogenesis in the
ontrol of reproduction in reptiles.

The study was performed in three different phases
uring the reproductive cycle: the pre-reproductive period
ebruary–March), the reproductive period (May–June),

nd finally in the post-reproductive period (July–August).
he pre-reproductive and post-reproductive stages are the
eriods defined by testicular activity blocking, character-
ed with typical estradiol peaks; the reproductive period

 the mating period, which involves sperm production,
reparation for ejaculation, and the production of high
vels of testosterone [41,42].

. Materials and methods

.1. Animals

Sexually mature males of P. sicula were collected in
ampania (southern Italy) during the pre-reproductive

period (March 2013), the reproductive period (May 2013),
and the post-reproductive period (July 2013). The animals,
once collected, were maintained in a soil-filled terrarium
and fed ad libitum with Tenebrio molitor larvae for
approximately 15 days, the time required to recover from
the capture stress. The experiments were approved by
institutional committees (Ministry of Health of the Italian
Government) and organized to minimize the number of
animals utilized. Animals were killed by decapitation after
deep anesthesia with ketamine hydrochloride (325 pg�g�1

body mass; Parke-Davis, Berlin, Germany). The sexual
maturity of each animal was assessed by morphological
parameters and histological analysis [43–47]. We utilized
twelve animals for each period. The brains were quickly
removed.

For some animals, the brain has been fixed for 24 h in
Bouin’s solution, dehydrated, and embedded in paraffin
wax. Consecutive sections 7 mm in thickness were placed
on polylysine glass slides (Menzel-Glaser, Braunschweig,
Germany) and utilized for immunohistochemistry pro-
cedures. For the other animals, the brain was stored at
�80 8C and used for biochemical measurements.

2.2. Immunohistochemistry

Lizard brains (N = 3) from each reproductive period
were fixed in Bouin’s solution, dehydrated in a graded
ethanol series and embedded in paraffin as previously
reported. Five-mm-thick sagittal sections of Bouin-fixed
brain on poly-L-lysine slides were treated as previously
reported [48–54]. Briefly, the sections were treated with
10 mM citrate buffer pH 6.0, and then incubated in 2.5%
H2O2 in methanol for endogenous peroxidase blocking. The
non-specific background was reduced with the incubation
in normal goat serum (Pierce, Rockford, IL) for 1 h at room
temperature. The sections were then treated overnight at
4 8C with a primary rabbit anti-human P450 aro antibody
(Santa Cruz Biotechnology), previously validated in Podar-

cis [39], diluted 1:100 in normal goat serum. The reaction
was revealed with a biotin-conjugated goat anti-rabbit
secondary antibody and an avidin-biotin-peroxidase
complex (ABC immunoperoxidase kit, Pierce), using DAB
(Sigma-Aldrich) as chromogen. Three investigators indi-
vidually blindly ranked the intensity of staining. Negative
controls were carried out by omitting primary antibodies.
The immunohistochemical signal was observed using a
Zeiss Axioskop microscope; images were acquired by using
AxioVision 4.7 software (Zeiss).

2.3. Sex steroid assays and measurement aromatase activity

in the brain

Testosterone and 17b-estradiol determinations in
lizard brains (N = 6, three pools of two brains each) were
carried out in the pre-reproductive, reproductive, and
post-reproductive periods. The brains were homogenized
1:10 (w/v) with PBS 1X. The homogenate was then mixed
vigorously with ethyl ether (1:10 v/v) and the ether phase
was withdrawn after centrifugation at 3000 g for 10 min.
The upper phase (ethyl ether) was transferred to a glass
tube and left to evaporate on a hot plate at 40–50 8C under
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a hood. The residue was dissolved in 0.25 mL of 0.05 M
sodium phosphate buffer, pH 7.5, containing BSA at a
concentration of 10 mg/mL, and then utilized for the ELISA
assay (Diametra) [55–59]. The sensitivities were 32 pg/mL
for testosterone and 15 pg/mL for 17b-estradiol.

Aromatase activity was measured by evaluating the in
vitro conversion rate of testosterone into 17b-estradiol.
Briefly, brain samples (N = 3 from each period) were
weighed and homogenized (1:2 w/v) in cold
20 mM K2HPO4 buffer, 1 mM EDTA, 3 mM NaN3, 10%
glycerol, 1 mM b-mercaptoethanol, pH 7.4. For routine
assays, the following were added to the test tubes: 10 mL of
a testosterone solution in propylene glycol (l0 mg/mL),
250 mL of brain suspension, and 100 mL of NADPH solution
(3 mg/mL), supplemented with antibiotics (penicillin
50 IU/L, streptomycin 50 IU/L and nistatin 100 IU/L). The
suspension was vortexed and incubated for 60 min at
22 8C. Control tubes contained all components, except
testosterone. Incubations were stopped by rapid freezing
in an ice bath. The steroids were then extracted three times
with 10 mL of diethyl ether. The incubation times and
temperatures were chosen based on preliminary data that
indicated that testosterone conversion increased linearly
in the range of 15–30 8C and 15–90 min incubation time.
Ethers were pooled and dried, and samples were utilized
for 17b-estradiol determination by the ELISA method
(Diametra) [55–59].

2.4. Statistical analysis

ANOVA followed by a Student–Newman–Keuls’s test
was used to evaluate differences between groups as
previously reported [60]. Differences were considered
statistically significant at P < 0.05. All data were expressed
as the mean � S.D.

3. Results

3.1. Brain aromatase immunolocalization

Immunohistochemistry highlighted a wide distribution
of P450 aro in the brain of P. sicula during the reproductive
cycle. Indeed, immunolabeling was evident in the telen-
cephalon (Fig. 1), the diencephalon (Fig. 2), the mesen-
cephalon (Fig. 3), as well as in the rhombencephalon
(Fig. 4).

In the telencephalon, a rostral and continuum popula-
tion of immunoreactive neurons, starting in the medial
septum and continuing dorsally up to the caudal-most
portion of the septum in the posterior telencephalon, was
observed in all the examined periods (Fig. 1A, B, C). In the
diencephalon, immunoreactive P450 aro ir-neurons were
localized in the preoptic periventricular (periventricular
parvocellular and magnocellular periventricular) nucleus,
and the signal was evident both in cell bodies (Fig. 2C, C

. 1. Immunohistochemistry for P450 aromatase in Podarcis

encephalon. Immunolocalization signal appears as brown areas.

period. D. Control. Immunopositivity (arrows) is evident in cellular bodies

and nerve fibers in rostral, ventral and dorsal to medial septum (MS)

positions. No labelling is evident in the control. The scale bars correspond

to 50 mm in A, D, 20 mm in B and C.
Pre-reproductive period. B. Reproductive period. C. Post-reproductive



in
in
e
c
o
w
o

F

B

in

c

A. Santillo et al. / C. R. Biologies 342 (2019) 18–26 21
set, E) and in hypothalamic nerve fibers (Fig. 2A, B, D, D,
set). The more caudal population of P450 aro ir-neurons

xtended rostro-caudally from diencephalon to mesen-
ephalon, where immunopositivity occurred in the tectum
pticum (Fig. 3 A, B, C), roughly at rhombencephalon,
here immunolabelled neurons occurred in the medulla

blongata and cerebellum (Fig. 4A, B, C).

Furthermore, the immunolabeling signal became more
and more intense, moving from the pre-reproductive
(Fig. 2A) to the reproductive (Fig. 2B, C), and finally to the
post-reproductive period (Fig. 2D, E). Such a modification
occurred also in the mesencephalon (Fig. 3) and the
rhombencephalon (Fig. 4). Controls obtained by omitting
the primary antibody were not immunolabelled (Figs. 1A,

ig. 2. Immunohistochemistry for P450 aromatase in Podarcis diencephalon. Immunolocalization signal appears as brown areas. A. Pre-reproductive period.

, C, C insert. Reproductive period. D, E. Post-reproductive period. F. Control. Immunopositivity is evident in the hypothalamic nerve fibers (HYPN) as well as

 the periventricular parvocellular and magnocellular periventricular nuclei (double arrows). No labelling is evident in the control. The scale bars

orrespond to 50 mm in A, C, D, F, 20 mm in B and E, 10 mm in C (inset) and D (inset).
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2F, 3D, 4C insert). Fig. 5 schematizes the distribution of
P450 aro in the brain of P. sicula.

3.2. Brain aromatase activity and sex steroid assays

A comparison of the sex hormone levels estimated in
the lizard’s brain during the main phases of the reproduc-
tive cycle revealed that the testosterone levels in the brain
were the highest (P < 0.05) during the pre-reproductive
period and the lowest (P < 0.05) in the reproductive and
post-reproductive periods. The hormonal profile was
greater in the reproductive than in the post-reproductive
phase (Fig. 6A). Conversely, brain estradiol levels were
significantly higher (P < 0.05) during the post-reproduc-
tive period than during the pre-reproductive and repro-
ductive phases (Fig. 6B). However, during the reproductive
phase, the amounts of brain estradiol levels were greater
(P < 0.05) than in the pre-reproductive period.

Furthermore, aromatase activity, evaluated as the
quantity of brain estradiol produced when testosterone
was used as substrate, was greater (P < 0.05) in the post-
reproductive period than in the other two examined
phases; it was also higher (P < 0.05) in the reproductive
phase than in the pre-reproductive one (Fig. 6C). Aroma-
tase activity found in the lizard’s brain during the three
different periods of the reproductive cycle was positively
correlated with the changes in the endogenous levels of
estradiol in the brain, whereas it was negatively correlated
with those of testosterone during the different phases of
the reproductive cycle.

4. Discussion

The distribution of P450 aro in the brain has been
extensively described in fishes, birds, and mammals. P450
aro localization has been detected in various telence-
phalic and mesencephalic areas, including the medial
preoptic area, the ventro-medial nucleus of the hypothal-
amus, and the amygdala, i.e. regions involved in sexual
behavior and reproduction [61–63]. In quails, morpho-
logical studies have revealed that the preoptic aromatase
is specifically expressed in the sexually dimorphic medial
preoptic nucleus, a structure where testosterone action is
fundamental to activate male sexual behavior [64]. The
present investigation demonstrates that, in the brain of
P. sicula, P450 aro ir-cells are widely represented in the
telencephalon, the diencephalon, the mesencephalon,
and the rhombencephalon in the pre-reproductive,
reproductive, and post-reproductive periods. Moreover,
we show that, also in the brain of Podarcis, a neuroste-
roidogenic process occurs, leading to the synthesis of
17b-estradiol. It is noteworthy that P450 aro immuno-
labeling was particularly evident in the diencephalic,
mesencephalic, and rhombencephalic regions, during the
reproductive and post-reproductive  periods. However,
specific immunolabeling was observed in the medial
septum, the preoptic area, and the hypothalamus. These
results are consistent with the function of these sites in
the sexual behavior of male lizards [65–67]. Indeed, it has
been reported that lesions of the hypothalamus-preoptic
area and amygdala in green anoles inhibit masculine

. 3. Immunohistochemistry for P450 aromatase in Podarcis

sencephalon. Immunolocalization signal appears as brown areas.

Pre-reproductive period. B. Reproductive period. C. Post-reproductive

riod. D. Control. Immunoreactivity is evident in the tectum opticum

trict (OT); no labelling is evident in the control. The scale bars

rrespond to 20 mm in A, D, and B, 10 mm in C.
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ourtship and copulation, impairing male sexual beha-
iors [65–67]. On the other hand, the localization of P450
ro reported here is the same as that reported in lizard
rain areas involved in neurosteroid synthesis [8]. Inter-
stingly, the Cyp17 gene, encoding the enzyme required
r biosynthesis of androgenic precursors, is widely

istributed in different parts of the brain of Cnemidopho-

us uniparens, including the preoptic area and the

hypothalamus [31], which, in the brain of P. sicula, are
immunolabelled by the P450 antibody. Moreover, we
observed a strong association between the distribution of
P450 aro in the brain of P. sicula and the expression of
Cyp19, the gene encoding the P450 aro in the brain of both
the whiptail lizard (Cnemidophorus uniparens) and the
green anole lizard (Anolis carolinensis) [29,31].

Our data also showed that the activity of brain
aromatase, which is low during the pre-reproductive
period, increases progressively during the reproductive
phase, reaching the greatest activity during the post-
reproductive period. The aromatase profile during differ-
ent phases of the reproductive cycle positively correlates
with the levels of estradiol in the brain. These data overlap
with those observed in the testis of P. sicula during the
reproductive cycle [39]. The increase of aromatase activity,
which, at the level of testis, causes an arrest of the
spermatogenesis, at the encephalic level corresponds to
the higher aromatase expression in specific brain areas and
could have a pivotal role in the specific sexual behavior of
animals during the reproductive cycle.

It is interesting to note that the increased activity of
P450 aro in the brain correlates at the cytological level with
the presence of a P450 aro immunohistochemical signal,
which progressively becomes more and more intense from
the pre-reproductive phase until the post-reproductive
phase. It is noteworthy that Cohen and Wide [31] found an
increased density of aromatase in the preoptic area from
breeding lizards compared to non-breeding lizards.
Seasonal differences in brain aromatase expression have
been found in frogs [26,68], birds [69,70], and bats [71].

In contrast to estradiol, the profile of testosterone
measured in the brain in the different phases of the
reproductive cycle shows a diverse distribution from what
has been observed at the testicular level [39]. In fact, at the
encephalic level, the most relevant synthesis of testoster-
one occurs in the pre-productive phase, while at the
testicular level, the highest testosterone levels were found
during the reproductive phase. The highest levels of brain
testosterone recorded during the pre-reproductive phase
could have a dual role in promoting the reproductive
activity of lizards by:

� stimulating the activity of aromatase, testosterone being
the substrate of this enzyme;
� determining the aggressive behavior typical of this

species in the pre-reproductive phase.

In fact, the androgens have a pivotal role in regulating
the aggressive behavior of males, which in this phase are
engaged in fights with the other males. It is well
documented that male P. sicula emerges from the winter
shelters in early March (pre-reproductive period) with
high levels of testosterone, inducing aggressive behavior,
so that they can engage in struggles between males for
male dominance. Subsequently, in April–May (reproduc-
tive period), testosterone and aggression decrease, and the
males can be involved in couplings with females [42].

The above considerations report that the role of brain
aromatase activity in the male lizard progressively

ig. 4. Immunohistochemistry for P450 aromatase in Podarcis

ombencephalon. The immunolocalization signal appears as brown

reas. A. Pre-reproductive period. B. Reproductive period. C. Post-

productive period. C (inset). Control. Scale bars correspond to 50 mm

 A, B, C (inset) and C.
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increases from the reproductive to the post-productive
phase with a consequent rise in estradiol levels and may
account for explaining male reproductive behavior in
P. sicula. Furthermore, it is possible that aromatase,
increasing the estradiol level could contribute to slowing
delay the spermatogenic process during the post-repro-
ductive period.

5. Conclusion

Our data show that sex steroid hormones are synthe-
sized in the brain of P. sicula, as in other vertebrates, in a
process called neurosteroidogenesis. It shows dynamic
changes during the different phases of the reproductive
cycle. The presence and the distribution of P450 aromatase
in specific brain regions strongly suggests the involvement
of this enzyme in sexual behavior. Furthermore, the
natural changes of its activity in the brain during the
different phases of the reproductive cycle of P. sicula could
have a pivotal role in balancing the local levels of
testosterone and estradiol, confirming an active role of
neurohormones in the neuroendocrine/behavioral regula-
tion of the reproductive axis.
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