

Mitochondrial DNA The Journal of DNA Mapping, Sequencing, and Analysis

ISSN: 1940-1736 (Print) 1940-1744 (Online) Journal homepage: http://www.tandfonline.com/loi/imdn20

The complete mitochondrial genome of Eremias vermiculata (Squamata: Lacertidae)

Qing-Lin Tong, Yun-Tao Yao, Long-Hui Lin & Xiang Ji

To cite this article: Qing-Lin Tong, Yun-Tao Yao, Long-Hui Lin & Xiang Ji (2014): The complete mitochondrial genome of Eremias vermiculata (Squamata: Lacertidae), Mitochondrial DNA

To link to this article: <u>http://dx.doi.org/10.3109/19401736.2014.953086</u>

ĥ
L
J

Published online: 27 Aug 2014.

Submit your article to this journal 🕑

View related articles 🗹

View Crossmark data 🗹

Citing articles: 2 View citing articles 🖸

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=imdn20

Mitochondrial DNA, Early Online: 1–2 © 2014 Informa UK Ltd. DOI: 10.3109/19401736.2014.953086 informa healthcare

MITOGENOME ANNOUNCEMENT

The complete mitochondrial genome of *Eremias vermiculata* (Squamata: Lacertidae)

Qing-Lin Tong¹, Yun-Tao Yao¹, Long-Hui Lin¹, and Xiang Ji²

¹Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China and ²Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, P.R. China

Abstract

In this paper, we report the complete mitochondrial genome of *Eremias vermiculata* (Squamata: Lacertidae), which is a circular molecule of 19,914 bp in size and consists of 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 1 putative control region. The A + T content of overall base of the composition of H-strand is 59.8% (T: 28.9%, C: 27.2%, A: 30.9%, G: 13.0%). All of the results provide powerful data to further study of the molecular systematics, species identification and conservation genetics.

Keywords

Eremias vermiculata, Lacertidae, mitogenome

History

Received 20 July 2014 Accepted 28 July 2014 Published online 27 August 2014

The variegated racerunner, *Eremias vermiculata* is a small (up to 63 mm in length from snout to vent), oviparous lacertid lizard found in sand dunes or Gobi desert (Zhao, 1999). This lizard is widely distributed in Northwest China (Inner Mongolia, Xinjiang, Gansu, Qinghai and Ningxia) and Mongolia (Zhao, 1999). Despite its wide geographical distribution, the ecology and biology of *E. vermiculata* are poorly known. Incidental information on this species is obtained from studies addressing the phylogenetic relationship among *Eremias* lizards in China as well as intraspecific differentiation of *E. vermiculata* based on mitochondrial DNA sequences (Guo et al., 2011; Wan et al., 2007). In order to obtain more basic genetic information about this vulnerable species, we determined to sequence the complete mitochondrial genome of *E. vermiculata*.

Experimental procedures and results analysis referred to Tong et al. (2014). The tissue (tail muscle) sample of *E. vermiculata* was stored at -70 °C in laboratory at Nanjing Normal University. Some DNA fragments were amplified using highly conserved primers (Kumazawa & Endo, 2004). After obtaining most part of the mitogenome, we designed species-specific primers for the remaining part with reference to previously determined sequences.

The organization of mitochondrial genome was shown in Table 1. Similar to the typical mtDNA of vertebrates, the complete mtDNA sequence of *E. vermiculata* (19,914 bp in length) had 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (Table 1). All the genes in *E. vermiculata* were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The overall base composition of H-strand is as follows: T (28.9%), C (27.2%), A (30.9%), G (13.0%), and the

Table 1. Location of features in the mtDNA of E. vermiculata.

Gene/region	Start position	Stop position	Spacer(+), overlap(-)	Length (bp)	Start codon	Stop codon	Strand
		1					
$tRNA^{Phe}$	1	68		68			Н
12S rRNA	69	1019	-1	951			Н
$tRNA^{Val}$	1019	1084		66			Н
16S rRNA	1085	2616		1532			Н
$tRNA^{Leu(UUR)}$	2617	2689		73			Η
ND1	2690	3658	+5	969	ATG	TAA	Η
tRNA ^{Ile}	3664	3734		71			Н
$tRNA^{Gln}$	3735	3805	-1	71			Н
$tRNA^{Met}$	3805	3872		68			Η
ND2	3873	4905		1033	ATG	Т	Н
$tRNA^{Trp}$	4906	4975	+2	70			Н
tRNA ^{Ala}	4978	5046	+1	69			L
tRNA ^{Asn}	5048	5120		73			L
OL	5121	5151		31			L
$tRNA^{Cys}$	5152	5211	+4	60			L
$tRNA^{Tyr}$	5216	5279	+1	64			L
COI	5281	6825		1545	GTG	AGG	Н
$tRNA^{Ser(UCN)}$	6826	6889	+3	64			L
$tRNA^{Asp}$	6893	6964		72			H
COII	6965	7652		688	ATG	Т	Н
$tRNA^{Lys}$	7653	7715	+1	63		-	Н
ATP8	7717	7878	-10	162	ATG	TAA	Н
ATP6	7869	8549	-1	681	ATG	TAA	H
COIII	8549	9332	1	784	ATG	Т	H
$tRNA^{Gly}$	9333	9402		70	1110	1	H
ND3	9403	9748		346	GTG	Т	Н
tRNA ^{Arg}	9749	9815	+1	67	010	1	H
ND4L	9817	10,113	-7	297	ATG	TAA	H
ND4L ND4	10,107	11,487	1	1381	ATG	Т	Н
tRNA ^{His}	11,488	11,556	-1	69	1110	1	Н
$tRNA^{Ser(AGY)}$	11,556	11,615	$+10^{-1}$	60			L
$tRNA^{Leu(CUN)}$	11,626	11,696	+3	71			H
ND5	11,020	13,523	$^{+3}$	1824	ATG	TAA	п Н
ND6	13,519	13,323	-5	522	ATG	AGG	п L
ND0 tRNA ^{Glu}			. 1	522 70	AIG	AUU	L L
INIVA	14,041	14,110	+1	70			L

Correspondence: Long-Hui Lin, Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, P.R. China. Tel: +86 571 28865336. Fax: +86 571 28865327. E-mail: linlh@outlook.com

Table 1. Continued

Gene/region	Start position	1	Spacer(+), overlap(-)	0		1	Strand
Cyt b tRNA ^{Thr} tRNA ^{Pro} D-loop	,	15,254 15,314 15,388 19,914	+8	1143 60 66 4526	ATG	TAA	H L L H

A + T content 59.8%. Eleven of the 13 protein-coding genes require ATG as the start codon, while CO1 and ND3 utilize GTG (Table 1). Six of 13 protein-coding genes use TAA as stop codons. The ND6 and CO1 end with AGG, and five genes (ND2, CO2, CO3, ND3 and ND4) use T as an incomplete stop codon, which is presumably completed as TAA by posttranscriptional polyadenylation. The noncoding regions include a control region (D-loop) and nine intergenic spacers (range from 1 to 10 bp).

We expect the present study to provide a useful database for analyzing the phylogenetic relationship of *Eremias*.

Nucleotide sequence accession number

The complete genome sequence of *E. vermiculata* has been assigned GenBank accession number KM104865.

Declaration of interest

The authors would like to thank Dan-Na Yu for help in the laboratory. Financial support was provided by grants from the Natural Science Foundation of China (31270571 and 31071910). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

- Guo XG, Dai X, Chen DL, Theodore JP, Natalia BA, Daniel AM, Wang YZ. (2011). Phylogeny and divergence times of some racerunner lizards (*Lacertidae: Eremias*) inferred from mitochondrial 16S rRNA gene segments. Mol Phylogenet Evol 61:400–12.
- Kumazawa Y, Endo H. (2004). Mitochondrial genome of the Komodo dragon: Efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Res 11:115–25.
- Tong QL, Du Y, Lin LH, Ji X. (2014). The complete mitochondrial genome of *Leiolepis reevesii* (Sauria, Agamidae). Mitochondrial DNA. [Epub ahead of print]. doi:10.3109/19401736.2014.905848.
- Wan LX, Sun SH, Jin YT, Yan YF, Liu NF. (2007). Molecular phylogeography of the Chinese lacertids of the genus *Eremias* (Lacertidae) based on 16S rRNA mitochondrial DNA sequences. Amphibia-Reptilia 28:33–41.
- Zhao KT. (1999). Lacertidae. In: Zhao EM, Zhao KT, Zhou KY, editors. Fauna Sinica, Reptilia Vol. 2. Beijing: Science Press. p 219–42.