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Abstract 

 

 

Ecological factors are known to limit species geographical distribution. Lacertids, being 

ectotherms, are likely to be most influenced by thermal conditions but factors such as 

environmental humidity or species interactions may also be preponderant. 

Podarcis liolepis and P. muralis are lacertid species overlapping at a small scale in 

north-eastern Iberian Peninsula (IP). While P. liolepis ranges from the north-east of IP 

to southern France, P. muralis has a wide range across Europe but in IP is restricted to 

the north. 

Knowing and understanding the factors most likely to shape this pattern is the aim of 

this study. This has been assessed through three methodological approaches. 

Ecophysiological experiments in the laboratory were conducted to assess the thermal 

and hydric requirements of P. liolepis and P. muralis (manuscript I). In a sympatry area, 

field records of body temperature were taken and the influence of environmental 

factors on body temperatures were assessed (manuscript II). Correlative predictive 

models were performed in order to assess the putative current and future geographic 

distribution of both species (manuscript III). The ecophysiological data previously 

obtained was integrated in the interpretation of the modelling data. 

The three approaches revealed that environmental humidity and not temperature is the 

main abiotic factor constraining these species. However, evidence of possible 

interaction between both species was detected in terms of thermal physiology since the 

preferred body temperature of P. liolepis shifted upwards in the presence of P. muralis. 

Combining this information with the prediction for future scenarios of climate changes, 

it is expected that P. liolepis may be the most affected if climate gets to hot and dry 

since it would shift northwards and would disappear from some areas due to 

aridification. On the other hand, P. muralis’ range is likely to decrease but little 

fragmentation would occur. 
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Podarcis, sympatry area, preferred temperature, water loss, Ecological Niche-based 

models, environmental humidity 
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“Much of the work that is done under the name of ecology is not ecology at all, 

but either pure physiology (…) or pure geology, meteorology, or some other 

science concerned primarily with the outer world.” 

 

Charles Elton (1927, pp.33) 

 

 

 

“As an ecological problem, the question of why a species has a restricted 

distribution, given its present physiological and other features, can be 

answered, even if with difficulty. But range limits pose an evolutionary problem 

that has not been solved.” 

 

Futuyma 1998, p. 535. 
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1 Introduction 

 

Distribution patterns of species are driven by an assemblage of factors (Gaston, 2009) 

including abiotic (climate, geography, geology) and biotic factors (dispersal limitations, 

interactions among species; Hardin, 1960; Araújo and Luoto, 2007), phylogeography 

(Oliverio et al., 2000; Carranza et al., 2004), and ultimately, physiological limitations. In 

order to understand the most preponderant driving force(s) of distribution patterns 

insights from a variety of fields of study should be integrated. Genetic (Pinho et al., 

2009; Camargo et al., 2010), morphological (Kaliontzopoulou et al., 2012) and 

modelling (Santos et al., 2006; Martínez-Freiría et al., 2008) techniques, among others, 

are widely used and should be combined with ecophysiological studies. Ecophysiology 

relates physiological mechanisms of organisms to their physical and biological 

environment (Macnab 2002). 

Lizards provide good models to conduct ecophysiological studies since many species 

are conspicuous, sedentary and abundant, short-living and small, hence being easy to 

handle and to keep during laboratory studies (Pianka and Vitt, 2003). 

Lizards constitute a paraphyletic assemblage within the Squamata order which also 

includes snakes (suborder Serpentes) and amphisbaenians (suborder Amphisbaenia) 

(Townsend et al., 2004; Camargo et al., 2010). Their representatives encompass a 

wide range of sizes, morphologies and ecological patterns and trends (Pianka and Vitt, 

2003). They occupy a wide range of habitats from the tropical forests to the most arid 

and warm deserts both in water and in land (Vitt and Caldwell, 2009). Their distribution 

ranges as far north as latitude 70º, after the Arctic Circle (Andersen, 1971). However, 

only a restricted number of species cross that barrier revealing that most terrestrial 

ectotherms are not able to thrive at high latitudes and high altitudes because they 

impose marked constraints such as low environmental temperatures, shortage of 

shelters and short reproductive periods (Sears & Angilletta Jr., 2003). Therefore, 

temperate lizards living in such areas are more constrained in terms of growth and 

activity levels than conspecifics in more mild climates (Sears and Angilletta Jr., 2003) 
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because low air temperature and high relative humidity may restrict the time available 

to forage leading to lower growth rates and decreased reproductive output (Adolph and 

Porter, 1993). Such restrictions lead to changes in life histories strategies. For 

example, it has been reported that Sceloporus lizards hatchlings in high altitudes in 

southern Utah grow faster than the hatchlings at low elevations but attain the same 

body size by the following spring after hatching (Sears and Angilletta Jr., 2003). 

Since evaporation increases with increasing temperature, it has been suggested a 

strong interaction between thermoregulation and water balance in ectotherms, 

particularly when water supplies are restricted (Mautz, 1982). Also, body size 

influences thermal and hydric requirements. Small-bodied organisms have low thermal 

inertia and lose water faster than bigger and heavier organisms (Sears and Angilletta 

Jr., 2003) because of the low surface/volume relation (Gans et al., 1968; Turk et al., 

2010). When size increases mass increases faster than the surface area because the 

volume increases in proportion to the cube of the linear dimension while the surface 

area is proportional to the square of the linear dimension (mass is directly proportional 

to volume). Since heating and cooling rates are related to surface area it is common to 

find that heating rates of similarly-sized and phylogenetically related individuals do not 

differ (Stevenson, 1985; Tosini and Avery, 1993; Fei et al., 2012). 

 

 

1.1 Thermal ecophysiology 

 

The influence of temperature on physiology has been the main focus in reptile studies 

probably because empirical observations reveal that reptiles directly depend on the sun 

for their daily activities (Huey, 1976). 

Physiological processes, behaviour and the performance of functions such as 

locomotion, reproduction, development, digestion and growth (Huey and Stevenson, 

1979; Huey, 1982; Angilletta et al., 2002) depend on body temperature (Tb) because it 

constrains the rates of biochemical reactions (Hochochka and Somero, 2002). Some 

ectotherms have a wide range of optimal temperature and so, are named eurytherms. 

Conversely, stenotherms have a narrow range of optimal Tb (Huey, 1982). 

Organisms show several responses on how they maintain Tb. Homoeothermic 

organisms such as birds and mammals are able to precisely maintain a constant and 

adequate Tb by regulating the rates of heat production and loss through high rates of 

metabolism. On the other hand, ectotherms (poikilotherms in old textbooks) cannot 
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metabolically maintain a stable body temperature (Huey and Slatkin, 1976; Castilla et 

al., 1999) so Tb mainly depends on changes of environmental temperature. Some 

ectotherms are, however, able to maintain a fairly constant body temperature different 

from environmental temperature by thermorregulating (Huey, 1982) since it allows 

keeping the rate of heating similar to the rate of heat loss (Schmidt-Nielsen, 1997b). 

Thermoregulation consists of a set of behavioural and physiological interconnected 

strategies used to reduce heat loss by conduction and evaporation and maximizing 

heat gain by radiation (for heliothermic species) or conduction (for thigmothermic 

species) in order to maximize heat storage  (Fig. 1; Macnab, 2002). Conduction, 

evaporation and radiation are the three physical processes by which temperature is 

transferred between an organism and the surrounding environment. Conduction of heat 

occurs when there is direct contact between two surfaces; convection is the movement 

of a fluid, so it may complicate the conductive heat transfer. When there is no direct 

contact between two objects/surfaces, heat is transferred by radiation. Solar radiation 

is the only commonly available external source of radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Thermal transfer between a lizard and the surrounding environment. The animal heats by direct (sun) or 

indirect (soil, rocks) infrared radiation and conduction with the warm substrate and loses heat by evaporation, 

convection and conduction. Shifts between sun and shade also allow the animal to maintain a rather stable 

body temperature. Adapted from Ough et al., 2004. 
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Thermoregulatory behavioural strategies include i) habitat selection (changing heat flux 

by shuttling between hot and cold microenvironments), ii) exposing different surface 

areas by modifying posture (basking; see Glossary), and iii) regulating activity times 

(selective exploitation of environmental thermal flux) (Huey and Slatkin, 1976; Huey, 

1982; Stevenson, 1985). 

These behavioural strategies are controlled at neuronal level. Two sorts of 

hypothalamic receptors sensitive to temperature determine the upper and lower set 

point temperatures (Tosini and Avery, 1996). The upper and lower thermal set points 

are temperatures at which animals change behaviour in order to termorregulate more 

precisely, keeping Tb within the optimal range. Whenever Tb reaches the lower set 

point the animal makes the Tb rise by starting to bask. They can also place themselves 

in direct contact with warm substrate and increase heat gain by conduction with the 

temperature of the substratum. When an animal reaches the upper set point after 

basking, it starts a cooling behaviour, such as lighten the skin colour, positioning more 

parallel to the sun or shifting to the shade (Tosini and Avery, 1993). Skin colour is 

empirically expected to influence heating rates: darker colour would heat faster 

because it increases the amount of solar radiation absorbed rather than reflected 

(Schmidt-Nielsen, 1997b). However, in lacertid lizards no relevant differences in 

heating rates have been observed between melanic and non-melanic individuals 

(Tosini and Avery, 1993). Conversely, it appears to be a physiological by-product of 

other evolutionary pressures on behaviour (Raia et al., 2010). 

Dorsal skin receptors trigger behavioural thermoregulatory mechanisms that are 

mediated by the described neural control. If no information reaches the skin receptors 

animals cannot properly control thermoregulatory behaviour hence spending more time 

in the heated area of a testing terraria and show a lower upper set point (Tosini et al., 

1995). If Tb rises above the upper set point, performance rapidly decreases until the 

critical thermal maximum while below the lower thermal set point performance 

decreases slower until the critical thermal minimum (Huey and Stevenson, 1979). The 

critical temperatures are determined when an animal cannot respond to external 

stimuli, that is, it cannot turn on its feet when placed on its back (Yang et al., 2008). 

When animals are exposed to exceptionally high or low temperatures and are unable to 

prevent reaching a Tb near the critical thermal set points several factors may lead to 

death: (i) denaturation of proteins, thermal coagulation; (ii) inactivation of temperature-

sensitive enzymes at rates that exceed formation rates; (iii) inadequate oxygen supply 

(because increased temperature accelerates the demand of oxygen; Niewiakowski and 

Waldschmidt, 1992); (iv) temperature effects on membrane structure (particularly in 



11 

 

molecular structures that depend on weak interactions that are easily changed by 

temperature); (v) different Q10 (see Glossary) on interdependent metabolic reactions 

(leading to depletion or accumulation of intermediary metabolic products) (Schmidt-

Nielsen, 1997b). Usually reptiles cease activity much before reaching such critical 

values except in emergency situations (Huey, 1976). 

By thermorregulating, reptiles use environmental conditions to reach a Tb close to the 

preferred body temperature (Tp) which is reached when there are no thermoregulatory 

constraints (Van Damme et al., 1990). This only happens in laboratorial controlled 

conditions since in the natural habitat biotic and abiotic constraints are present. 

According to Tosini et al., (1994), the Tb of species within the lacertids genera Zootoca 

and Podarcis can be affected by the feeding status. After feeding, most lizards select 

higher mean Tb and higher upper and lower set point temperatures than before feeding 

or after defecating (Macnab, 2002; Tosini et al., 1994). The overall time spent basking 

and shuttling frequency also increased after feeding. This response is probably due to 

an increase of the rate and/or efficiency of digestion since higher Tb seems to facilitate 

the mechanical processing of food and the catabolic action of enzymes speeding the 

digestive process (Macnab, 2002; Tosini et al., 1994). However, the opposite pattern 

was observed in nocturnal geckos in which starved lizards selected higher Tp than fed 

lizards (Autumn and De Nardo, 1995). This may be related with the different diel cycles 

of diurnal and nocturnal species. 

Daily activity patterns may change along the year for temperate lizards (Fig. 2). With 

increasing number of light hours activity periods are longer and Tb rises (Lorenzon et 

al., 1999). In contrast, with less light hours the lower and upper set points decrease 

(Rismiller and Heldmaier, 1982; Tosini and Avery, 1996) and lizards become inactive. 

 

 

Fig. 2. Seasonal variation in diel activity of temperate diurnal lizards. White region indicates times when thermal 

conditions allow activity; shaded region indicates period of inactivity. Adapted from Adolph and Porter (1993). 
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During periods of inactivity Tb may fall outside the set-point range with no harm for the 

inactive individuals (Christian and Weavers, 1996). Tb changes caused by photoperiod 

are probably the result of its influence on different factors, namely on environmental 

temperature. For instance, photoperiod seems to affect thermal set points through the 

parietal eye (see Glossary) of lizards (Tosini and Avery, 1996). Infra-red irradiance also 

changes along the year or in a day-period hence influencing the levels of activity of 

lizards and selected Tb. When irradiation increases the upper and lower set point 

temperatures also increase (Tosini et al., 1995). In areas where fast changes of 

irradiance occur, as when cloud cover increases, responding rapidly to such changes is 

adaptive for lizards. 

Several techniques have been widely used for measuring Tb of medium to small-sized 

lizards. The thermographic technique (infra-red thermography) is a non-invasive 

method adequate for measuring the temperatures of small and medium-sized lizards 

(Jones and Avery, 1989; Tosini and Avery, 1993). On the other hand, the contact 

thermometer allows measuring the core Tb by inserting a probe inside the cloaca 

(Rismiller and Heldmaier, 1982). Temperature records given by these two techniques 

are not equivalent: the infrared thermography provides with higher values of Tb and 

increasing bias with temperature which may occur because the infrared thermometer is 

not small enough and measures the background temperature (Carretero, 2012). With 

an infrared camera this bias would be prevented. Additionally, radiotelemetry is used to 

measure Tb in free-ranging reptiles of bigger size, as monitor lizards for example 

(Christian and Weavers, 1996) although it is an invasive technique, is not adequate for 

small species and it is expensive (Carretero, 2012). 

 

 

1.2 Hydric ecophysiology 

 

Ecophysiological studies regarding hydric requirements in adult reptiles are scarce. 

They are mainly focused on water loss (Wl) rates based on physiological studies on 

skin resistance to Wl and scales (Roberts and Lillywhite, 1980; Tu et al., 2002; 

Calsbeek et al., 2006). 

Wl rates are correlated with the habitat occupied by many species. As a general trend, 

reptiles inhabiting dry habitats have higher skin resistance to Wl (Munsey, 1972; 

Bentley and Schmidt-Nielsen, 1966; Tu et al., 2002). This has been demonstrated for 

snakes (Gans et al., 1968; Dmi’el, 1998; Tu et al., 2002; Moen et al., 2005), agamid 
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lizards  (Eynan  and  Dmi’el,  1993),  anoles  (Sexton  and  Heatwole,  1968;  Dmi’el  et  

al.,1997), skinks (Shoemaker et al., 1967), Sphaerodactylus geckos (Steinberg et al., 

2007) tegu lizards (Christian et al., 1999), among others. Terrestrial reptiles usually 

have Wl rates much smaller than aquatic reptiles (Lillywhite and SanMartino, 1993; 

Moen et al., 2005). 

Munsey (1972) showed similar Wl rates for different lizard species belonging to distinct 

genera that occupy the same habitat and have similar activity patterns (Turk et al., 

2010). Nevertheless, closely related species living in similar habitats may have different 

Wl rates which may be explained by differences in skin resistance to dessication 

(Munsey, 1972). 

Lizards mostly use free-water available in the environment through drinking (Benabib 

and Congdon, 1992). However, in dry and arid habitats where free-water is scarce, 

some species persist only using the water available in food, such as ingested insects 

(Benabib and Congdon, 1992), although some may also drink water from condensation 

in their own skin (Withers, 1993). 

Lizards lose water mainly through skin (Bentley and Schmidt-Nielsen, 1966; Dmi’el, 

1972a; Dmi’el et al., 1997; Blamires and Christian, 1999) but also through the 

respiratory and the excretory tracts, and the eyes (Mautz, 1982; Blamires and 

Christian, 1999). Cutaneous Wl rates depend on the surface area exposed, on its 

resistance to Wl and on the water differential between the organism and the 

surrounding environment. The amount of water lost through respiration is determined 

by the ventilation rate and Tb (Thompson and Withers, 1998). Respiratory water loss is 

directly proportional to metabolic rate, assuming that the volume of expired air is 

saturated with water vapour (Gans et al., 1968; Munsey, 1972) and that the efficiency 

of oxygen extraction is constant but this may not be true in all reptiles (Dmi’el, 1972). 

The amount of water lost by excretion is usually not significant for most lizards 

because, in contrast with mammals, they excrete uric acid (solid) and not urea (soluble 

in water). Ocular water loss may be an important mean of water loss in the absence of 

barriers such as spectacled eye lids (Mautz, 1982). However, the cutaneous water loss 

exceeds the respiratory and ocular water loss by a factor of two or more (Schmidt-

Nielsen, 1997a). This is true even for desert lizards which lose two thirds of body water 

through skin and only one third through the respiration. 

Wl increases with increasing temperature and wind speed and decreasing barometric 

pressure because they cause an increase in water vapour density difference between 

the epidermis and the surroundings (Blamires and Christian, 1999; Gans et al., 1968). 

Also, humidity conditions of the environment have an important role in determining 
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rates of Wl (Blamires and Christian, 1999). In humid conditions, the difference of water 

vapour pressure between the epidermis and the surrounding air is smaller, and the 

water vapour diffusing force from the water surface into the air is correspondingly 

reduced (Schmidt-Nielsen, 1997a). On the contrary, if the atmosphere is dry, the water 

vapour density decreases in the environment so evaporation increases (Mautz, 

1982).Wl rates influence Tb (Warburg, 1965) since lizards provided with more water 

select higher Tb (Lorenzon et al., 1999). On the contrary, water scarcity may lead to a 

decrease of Tb because lizards tend to spend more time in refuges. This reveals that 

hydric conditions of individuals may prevent reaching Tp (Grant and Dunham, 1988). 

Shoemaker, Licht and Dawson (1967) reported that skinks placed at an air temperature 

above Tp lost 25 times more water than at lower Tb. The same was observed for 

resting and active snakes: a difference in 13ºC caused by activity doubled total Wl 

(Dmi’el, 1972) revealing that activity levels also influence the rates of Wl (Gans et al., 

1968). Even so, higher rates of Wl are detected in resting desert iguanas shedding skin 

possibly due to a temporary decrease of skin resistance to Wl (Minnich, 1971). 

Therefore, higher activity levels are prone to indirectly influence other organismal 

processes. For instance, growth rate is positively related to higher activity levels so it 

can be limited by water availability even if lizards are provided with food and heat 

(Sears & Angilletta Jr., 2003). During laboratory experiments it has been observed that 

individuals submitted to desiccation conditions had lower activity levels and lower 

growth rate. Conversely, lizard hatchlings supplemented with additional water grow 

faster than those with restricted access to water (Lorenzon et al., 1999). This is also 

verified in natural conditions: tropical lizards grow faster in the wet season rather than 

in the dry season (Stamps and Tanaka, 1981). 

Preventing desiccation is vital for whole-organism processes and lizards have several 

adaptations to preserve water and prevent dehydration. They include behavioural and 

physiological changes such as skin resistance, uric acid excretion, production of dry 

faeces, salt gland excretion (Munsey, 1972) and vasomotor changes (Eynan and 

Dmi’el, 1993). 

Behavioural strategies adopted by reptiles include: i) increasing the inactivity period 

which reduces the respiratory Wl during the driest months (Christian et al., 1999); ii) 

selecting highly humid microenvironments when they are inactive; iii) changing 

thermoregulatory behaviour by spending less time at high temperatures thereby 

reducing the cutaneous water loss (Mautz, 1982; Lorenzon et al., 1999). These 

strategies can be adopted simultaneously (Christian et al., 1999). 

Physiological strategies to prevent Wl are associated with skin resistance to Wl which 
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is related to the outer layers of epidermis, including beta (β, hard and inflexible 

corneous layers), mesos, alpha (α, soft-pliable corneous layers) and germinative layers 

(from the outside inwards) (Tu et al., 2002; Alibardi, 2003). Skin resistance is conferred 

by dead, keratin-filled cells inserted in a matrix of lamellar lipids and increases with 

increasing beta-keratin thickness and deposition of lamellar lipids in the mesos layer 

(Bennet and Licht, 1975; Tu et al., 2002). In fact, lipids are the main barrier to water in 

terrestrial life (plants, arthropods and vertebrates) (Lillywhite, 2006). 

The higher resistance to Wl of reptile’s skin in comparison to other vertebrates (Bennet 

and Licht, 1975) has been commonly addressed to the presence of scales. Among 

anoles species it has been reported a correlation between scalation and habitat type: 

scale numbers increased with increasing precipitation and decreasing temperature 

(Calsbeek et al., 2006). Such trend may have its explanation on the fact that the 

number and size of scales influence the surface of skin exposed to the atmosphere. 

Although higher area of exposed skin may not be directly responsible to higher Wl rates 

due to keratinization of the skin, it may influence local water flux. The general pattern of 

scalation in desert reptiles consists on large overlapping scales while in mesic or 

tropical species it is usually consistent with small and granular scales with more 

exposed skin area (Calsbeek et al., 2006). These patterns may be correlated with 

ecological variables: when humidity and elevation increase while temperature 

decreases, scale number increase (Horton, 1972). Even so, they may instead be under 

maternal effect, they may be pleiotropically linked to other trait(s) under selection or 

due to phenotypic plasticity (Calsbeek et al., 2006). Such patterns are verified both 

inter- and intra-specifically although exceptions are known to exist (Sphaerodactylus; 

MacLean, 1985; anoles; Malhotra and Thorpe, 1991). Yet, it has been observed that 

scaleless snake individuals registered the same, or even lower, cutaneous water loss 

than normal individuals with scales (Bennet and Licht, 1975). This may reflect that 

reptilian scales may not be closely associated with preventing Wl. Scalation may not be 

a good predictor of the skin resistance to Wl also because species with similar rates of 

Wl have opposite scalation patterns (Dmi’el et al., 1997). 

Among reptiles, phylogenetic differences concerning the efficiency of retaining water 

are detected. For instance, agamids are more effective than geckos which in turn are 

more effective than skinks (Sexton and Heatwole, 1968), colubrids also evaporate 

more than viperids for the same experimental temperatures (Dmi’el, 1972). 

Studies on hydric physiology of reptiles are needed (simultaneously with thermal 

requirements) because evidence show their physiology, distribution and life-histories to 

be influenced by water availability (García-Muñoz et al, 2011; Carretero et al., 2012). 
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1.3 Ecological Niche Models 

 

Modelling species’ ecological niche under a geographic context allows not only 

predicting the effects of climate changes on their distribution but also the expansion of 

potentially invasive species, the biogeographic relationships between them, the 

presence of hotspot areas and high diversity areas or areas adequate for 

reintroductions (Guisan and Zimmermann, 2000; Peterson, 2006; Sillero et al., 2009). 

Ecological niches of species (and not their geographic distribution; cf. Sillero; 2011, 

Soberón & Peterson, 2005) are inferred by Ecological Niche Models (ENMs). ENMs are 

based on the relation species-environment since it is known that i) abiotic conditions, ii) 

biotic factors like competition or prey availability (Santos et al., 2006), iii) historical 

processes like vicariant speciation (Busack, 1986) and isolation of species by 

glaciations events (Avise et al., 1998), iv) dispersal factors and v) evolutionary history, 

may play a preponderant role in determining the distributions of some species (Costa et 

al., 2008) by influencing their distribution patterns (Soberón and Peterson, 2005; 

Peterson, 2006). ENMs relate ecogeographical variables with the observed distribution 

of species. 

Correlative distribution models have been the most commonly used to predict species 

distributions and the impacts of climate change (Kearney et al., 2010). These models 

predict the realized niche of a species (Guisan and Zimmermann, 2000; Pearson and 

Dawson, 2003) by associating spatial environmental data (slope, aspect, elevation, 

topographic position, habitat type, geology) with species’ abundance or presence 

records (presence-true absence records; presence-pseudoabsence; presence-only) to 

provide values of suitability for each point in space (Sillero, 2011). The realized niche 

model thus generated, being a subset of the fundamental niche, reflects that the 

species’ absence may be influenced not only by competition processes as suggested 

by Hutchinson (1957), but also by other biotic interactions (mutualism, predation, 

parasitism, symbiosis) or by dispersal limitations or historical reasons (Holt, 2009) (Fig. 

3). Biotic interactions have the potential to be directly accounted for in the model by 

including the distribution of other species (Soberón and Peterson, 2005). 

Correlative models assume distributional equilibrium (or pseudo-equilibrium) of species 

with the variables in the model (Monahan, 2009). Since climate changes are expected 

to create non-equilibrium distributions, extrapolations for changing scenarios are limited 

between species’ patterns and the environment (Lischke et al., 1998), although for 

organisms reacting slowly to environmental variability this limitation is less restrictive. 
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Fig. 3. Representation of a geographic area with the main factors limiting species distributions: abiotic (A), 

biotic (B) and historical or dispersal (M). Outside the area of intersection of the three factors habitat is 

unsuitable for species. The realized niche (RN) is the area common to A and B while the fundamental niche (PN) 

is located in A. Circles are species absences and pluses are species presences. Adapted from Sillero (2009). 

 

Correlative models also assume that physiological limits and indirect influences from 

climate remain constant over time and space and that their distributional patterns 

depend mostly on major climatic variables. In addition, historical factors (such as past 

geological or climatic events), or physical barriers, may influence the present 

distribution of biological entities therefore limiting this type of modelling (Araújo and 

Guisan, 2006). Correlative models do not clarify if a species (apparent) absence in a 

certain area is determined by its physiology or by extrinsic limitations (Monahan, 2009). 

There are three categories of correlative models depending on the type of data used: 

Presence-Absence, Presence-Pseudoabsence and Presence-only models (Table 1). 

Presence-Absence models relate the presence or the absence of a species with a set 

of ecogeographical variables hence inducing the suitable conditions for the presence of 

a species and unsuitable for its absence. Presence-Pseudoabsence models use only 

presence records and attribute suitable conditions to areas where a species record 

exists and pseudoabsence areas where no records exist (Phillips et al., 2006). 

Presence-only models also use only presence records and overlap them with maps of 

the ecogeographical variables deducing the range of conditions suitable for 

survival.Presence-only models may be advantageous over Presence-Absence models 

because the latter are prompted to introduce errors since absences may have traces of 
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biotic interactions, dispersal constraints and disturbances which may impede the 

accurate modelling of distributions although presence-only may also bring some 

inaccuracy as species may be absent from an area with suitable conditions due to past 

events that caused local extinctions (Elith et al., 2011). 

 

Table 1. The three types of correlative methods according to the type of data used and most common 

techniques used to produce Ecological Niche-based models. 

 

Method type Modelling technique 
 

  
 

 GLM (General Linear Models) 
 

Presence - Absence GAM (General Additive models) 
 

 Logistic regression 
 

  
 

Presence - Pseudoabsence 
Maxent (Phillips et al., 2004; Phillips et al., 2006) 

 

GARP(Genetic Algorithm for Rule-set Prediction)  

 
 

  
 

 Multidimensional Model Envelope (Busby, 1986; Nix, 1986) 
 

Presence – only 
HABITAT (Walker and Cocks, 1991) 

 

DOMAIN (Carpenter et al., 1993)  

 
 

 ENFA (Ecological-Niche Factor Analysis) 
 

  
 

 

Models produced according to the type of data and software selected should be 

calibrated and then their performance evaluated. This is done by selecting a 

percentage of the data set for training (used to calibrate the model) and other for 

testing (to evaluate the quality of the predictions (Guisan and Zimmermann, 2000; 

Phillips, Anderson and Shappire, 2006). The model should be calibrated and then 

evaluated by crossvalidation (Van Houwelingen and Le Cessie, 1990), subsampling or 

bootstrap (Efron, 1979; Fielding and Bell, 1997). The crossvalidation technique 

randomly splits the occurrence data in equal-sized subsets which are compared in 

order to validate the test results. The goal is to assess if the result is replicable or just a 

product of arbitrary fluctuations. This technique uses all the data for validation so small 

data sets are better used. However, in the case of a small data set only bootstrap 

methods should be applied (Phillips et al., 2006). They determine the variability 

(accuracy) of a statistics between subsamples (Shao and Tu, 1995). Bootstrap is a 

Monte Carlo statistical method that takes sampling with replacement from the original 

sample, hence being more accurate than sampling without replacement in terms of 

simulating chance as it samples the impacts of the real sample size (Wintle et al., 

2005). Each sample is created independently from the other samples and the number 

of samples is equal to the total number of presence points. 
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The importance of the variables for the prediction of the model can be assessed by 

Jackknife (Miller, 1974) which is a resampling method that uses subsets of the original 

sample to estimate the bias and standard error of a statistic. This is determined by 

leaving one observation out from the sample set each time it recalculates so each 

model is built using n-1 observations (Miller, 1974; Pearson et al., 2006). 

Models thereby produced and validated can be projected to past and future climate 

scenarios considering also the relevance of the variables for the current distribution of 

species. Assessing past distribution renders further understanding on species origin 

and dispersal while assessing the impacts of future climate changes allows predicting 

how species distributions are likely to be affected, namely in terms of range decrease 

or expansion, or even extinctions and how such climate changes may affect their life-

histories and physiology (Hijmans and Graham, 2006; Bernstein et al., 2007). 

Some enterprises provide coupled atmosphere-ocean general circulation models 

commonly used to predict the impacts of future climate changes (CCCma, HadCM3 

and CSIRO). Environmental scenarios are used to simulate global or regional climate 

changes although they are not real predictions (Nakicenovic et al., 2001). They are 

based on a series of assumptions on water-air circulation (including production of 

greenhouse gases and aerosol precursor emissions) but also on demographic, social, 

economic, technological, and environmental developments (Bernstein et al., 2007). 

There are four main groups of scenarios (A1, B1, A2 and B2) and each is a logical and 

consistent portrayal of a possible future state of the world (Fig. 4) (Bernstein et al., 

2007). Within A1 group there are three groups that describe alternative directions of 

technological change (fossil intensive (A1FI), non-fossil energy resources (A1T) and a 

balance across all sources (A1B) (Bernstein et al., 2007). The A1 group describes a 

world with rapid human population growth until mid-century, very rapid economic 

growth and rapid introduction of new and more efficient technologies. The A2 scenarios 

reflect a very heterogeneous world with the largest population size and the slowest 

economic development of all scenarios along with the highest emissions of CO
2
 (Fig. 

4A). The B1 predicts rapid changes in economic structures and the introduction of 

clean and resource-efficient technologies namely a smooth transition to alternative 

energy systems and the decline of conventional oil and gas resources being the one 

with lower CO
2
 emissions and lower temperature increase (Fig. 4A and B). B2 

scenarios describe a continuously increasing population (lower than A2) and 

intermediate economic development but it is oriented toward environmental protection 

but globally the energy system remains predominantly hydrocarbon-based to 2100. 
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Fig. 4. (A) Past and future CO
2
 atmospheric concentrations; (B) Variations of the Earth's surface temperature: 

years 1000 to 2100. Adapted from IPCC, 2003. 
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1.4 Model species 

 

Podarcis species are lacertid lizards usually found in parapatry, but sympatry or 

syntopy are not uncommon (Carretero, 2008). 

In the north-east of Iberian Peninsula P. liolepis and P. muralis have overlapping 

ranges in restricted areas (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. General distribution of P. liolepis (blue) and P. muralis (red). The two species overlap in north-eastern 

Iberian Peninsula. After IUCN and Renoult et al., 2010. 

 

The two species are not sister taxa and diverged more than 10.09 Mya (Carretero, 

2008; Kaliontzopoulou et al., 2011). They are morphologically and ecologically similar 

(Fig. 6; Diego-Rasilla, 2009; Renoult et al., 2010). 

P. liolepis occurs in north-eastern Spain and some areas of southern France (Geniez 

and Deso, 2009; Renoult et al., 2010) in a wide variety of habitats, except those of 

Eurosiberian characteristics, from the sea level to 1700 m but it is most abundant in 

plains and open habitats. P. muralis has the widest distribution among Podarcis, 

ranging from eastern Iberian Peninsula to north-western Turkey (Gasc et al., 1997). P. 

muralis occupies a great variety of non-Mediterranean habitats in Iberia including pine, 

beech and fir forests, riparian woodland, meadows and crops although it can be found 
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in Mediterranean environments in the Italian Peninsula and in the Balkans (Llorente et 

al., 1995; Gasc et al., 1997; IUCN, 2012). 

 

 

 

 

1 2 3 4 
 

  

    

5 6 7 8 
 

  

 

Fig. 6. Podarcis liolepis captured in Barcelona city on April 2011: males (1- dorsal surface; 2- ventral surface) 

and females (3 and 4). P. muralis captured in the Montseny Natural Park, North-East Iberia: males (5 and 6) and 

females (7 and 8). Fotos: Antigoni Kaliontzopoulou. The images are not at scale. 

 

 

They are found in sympatry in the northern part of P. liolepis’ distribution in Iberia, in a 

restricted area in the Montseny Natural Park (Fig. 7) and in mountain areas of Navarra 

and coastal areas of País Vasco (Gosá, 1985, 2003; Gosá et al., 1986; Llorente et al., 

1995; Diego-Rasilla, 2009). 

In addition, they are in contact with other lacertid species. P. liolepis may be in contact 

with P. hispanica type 1a to the west and with P. hispanica type 1b to the south. In the 

southernmost part of the distribution, in the area around the town of Valencia, it is 

found in sympatry with P. hispanica sensu stricto (Renoult 2010). To the west of 

Valencia there are contact zones with P. hispanica type 2. 

In the Pyrenees, P. muralis is in syntopy with Iberolacerta bonnali in the highest 

altitudinal limit and in the western Pyrennes it is in parapatry with I. aranica and I. 

aurelioi (Rica, 1983; Palanca et al., 1997). It is also in parapatry with P. bocagei 

(Galán, 1986) in the Northwest of Iberia, and with I. galani in the north of León (Delibes 

and Salvador, 1986). 
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Fig. 7. Map of the Montseny Natural Park with the main regions. Yellow circle - the collection site of P. muralis 

in April 2011 (Santa Fé); Blue circle – collection site of P. liolepis and P. muralis (sympatry area; Turó del 

Home). 
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Objectives 

 

The main goal of this thesis is to understand what shapes the distribution patterns of P. 

liolepis (Llorente et al., 1995; Renoult et al., 2010) and P. muralis (Schulte, 2008; 

Diego-Rasilla, 2009) (Fig. 5). Specifically, the ecological requirements of each species 

are assessed by: 

 

 determining the thermal preferrence and optimal thresholds in adult individuals 

of the two Podarcis species;  

 estimating the water loss rates in adults;  

 testing for species interactions in terms of thermal requirements;  

 assessing field body temperatures in a sympatry area;  

 elaborating correlative models of distribution in NE Iberia;  

 extrapolating the models to the future;  

 developing a new methodology that allows determining, simultaneously, Tp and 

Wl.  
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Abstract 

 

Environmental factors directly constrain the distribution of ectotherms. Most 

ecophysiological studies on reptiles focus on temperature but environmental humidity 

may also be a relevant factor. Here, we assess the ecophysiological traits of two lizard 

species with different but partially overlapping distributions in the Iberian Peninsula: 

Podarcis liolepis (Southern, Mediterranean) and P. muralis (Northern, Atlantic). 

Preferred body temperatures (Tp) and water loss rates (Wl) under realistic 

environmental conditions were measured in the lab. Tp was determined in a 

photothermal gradient during ten consecutive hourly intervals and Wl was measured 

during twelve hourly intervals inside dry sealed chambers. Also, putative thermal 

interactions with conspecifics and heterospecifics were tested for both species by 

placing two lizards in a termogradient. 

Surprisingly, results revealed no differences of Tp between species or sexes. 

Conversely, interspecific differences in the time profiles of Wl were found. More 

significantly, an asymmetrical interaction was detected regarding body temperature: P. 

liolepis shifted Tb upwards in the presence of an inter-specific individual while Tp of P. 

muralis remained unchanged. Implications on species distribution patterns are 

discussed and the importance of hydric ecophysiology for reptilian taxa is highlighted. 

 

 

Keywords: Ecophysiology, thermal preference, water loss, Podarcis, sympatry 
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Introduction 

 

A species' geographic range is conditioned by both biotic and abiotic factors, once the 

effects of geographic barriers are excluded (Díaz et al. 1996; Gvoždík 2002; Kearney 

and Porter 2004). Lizards, being ectotherms, are highly constrained by abiotic 

conditions because they follow more closely the temporal and spatial variations 

of the environment, especially regarding temperature and humidity. 

Body temperature (Tb) certainly has a major influence on lizard physicochemical 

processes (Huey 1991; Castilla et al. 1999). The highest performance of those 

processes is attained when the preferred body temperature (Tp) is reached. By 

definition, Tp is attained in the absence of thermoregulatory constraints (Van Damme, 

Bauwens, & Verheyen, 1990; Bauwens et al., 1995; Castilla, Van Damme, & Bauwens, 

1999; Carretero, Roig, & Llorente, 2005; Carretero, 2008). In fact, when Tb comes 

close to Tp, performance of many physiological, biochemical and other organismal 

processes is enhanced (Bauwens et al., 1995; Huey and Slatkin, 1976; Van Damme, 

Bauwens, Castilla, and Verheyen, 1989). Nevertheless, Tp may change within the 

lifespan of individuals (Van Damme et al. 1986) while it is conserved within species 

(Van Damme et al. 1990) for individuals in the same sex, reproductive state and body 

condition (Carretero et al. 2005). Although studies on thermal ecology of reptiles 

dominate the ecophysiological literature other environmental variables may be acting. 

Namely, several studies suggest water constraints as important in limiting reptiles’ 

geographic range (Flatt et al, 2001; Packard, 1999; Packard, 1991). Particularly for the 

genus Podarcis ecological niche models suggest that humidity to be more relevant than 

temperature (Sá-Sousa, 2000; Herkt, 2007; Kaliontzopoulou et al., 2008; Carretero et 

al., 2010). 

In addition to abiotic factors, inter-specific interaction with ecologically similar species 

may shape a species' distribution  (Arntzen and Espregueira Themudo 2008; Costa et 

al. 2008). In such cases, thermal and hydric physiology may be particularly relevant, as 

they constitute environmental features for an ectotherm. When in sympatry, individuals 

may have to spend time in activities that otherwise would not be part of their daily time 

budget such as behavioral interactions with either conspecifics or heterospecifics. This 

poses extra constraints on the mechanisms of thermoregulation. In fact, the presence 

of another species may shift body temperatures below (or above) the optimum (García-

Muñoz and Carretero submitted; Osojnik et al. 2010). For instance, the presence of 

another species may result in more time spent moving instead of basking preventing it 

from reaching a suitable Tb hence decreasing lizard’s performance. This is 
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exacerbated in high populations densities because social interactions are expected to 

be more frequent (Avery 1982; Diego-Rasilla and Pérez-Mellado 2000). Although 

studies on hydric constraints in sympatry are scarce, similar patterns may be predicted, 

where the presence of a heterospecific competitor may entangle the acquisition of an 

optimal hydric balance (see García-Muñoz et al., submitted). From a different 

perspective, lizards selecting high temperatures may increase their water loss rates 

(Wl) risking desiccation (Mautz, 1982; Bowker, 1993). Hence, if water availability is 

restricted, a trade-off between Tp and Wl may be predicted. Because of that, 

restrictions in water availability may lead to changes in activity patterns which may 

cause changes in body temperature, binding together both physiological traits 

(Andrews, 1982; Adolph and Porter, 1993; Lorenzon et al., 1999). 

The congeneric lacertids Podarcis muralis and P. liolepis provide a good model system 

to study how species coexistence influences thermal and hydric requirements, because 

a) their geographical ranges overlap; b) they are phylogenetically related although not 

sister taxa (Harris and Arnold 1999) and roughly similar morphologically and 

ecologically. P. muralis is widespread across Europe but restricted in Iberia, while P. 

liolepis is abundant but restricted to NE Iberia and Southern France). Both can be 

sympatric and syntopic. P. liolepis is a member of the Iberian and North-African clade 

of the genus Podarcis, while P. muralis is thought to belong to the Italian clade (Harris 

and Arnold 1999). 

There are indications that the two species occupy different habitats in terms of 

temperature and water availability (Gosá 1985; Llorente et al. 1995). This suggests that 

both species may diverge in their physiological traits, which has not been assessed yet.  

In this study we aim at 1) assessing intraspecific (sex and time) and interspecific 

variation in Tp; 2) determining water loss rates (Wl) and their temporal variation for 

both species and sexes; 3) testing for the existence of a trade-off between Tp and Wl; 

and 4) experimentally evaluating whether intra- and interspecific thermal interaction 

may affect Tps. 

 

 

Material and Methods 

 

Study area and sample size 

 

Only adult individuals were used in all the experiments (minimum adult snout-vent 

lengths, SVL, 46mm for P. muralis, Diego-Rasilla, 2009; 38mm for P. liolepis, 



33 

 

Carretero, Llorente, 1993; Kaliontzopoulou, et al., 2006). Twenty one P. liolepis (9 

males and 12 females) were collected in a site (Palau Reial, 41°23’15’’N 2°07’04’’E; 76 

m altitude) within Barcelona (NE Spain) dominated by Pinus pinea, Pinus halepensis, 

Cedrus deodara and Cupressus sempervirens. Fifteen P. muralis (7 males and 8 

females) were collected from Santa Fé del Montseny (Montseny Natural Park, NE 

Iberia, 41°46′26″N 2°27′43″E; 1136 m) dominated by Quercus ilex and Fagus sylvatica 

forests. 

All specimens were captured by noose (García-Muñoz and Sillero 2010) in April 2011 

and transported to the facilities of the University of Barcelona, where they were kept in 

20 x 10 x 15cm individual terraria under natural light conditions. Food (Achaeta 

domestica and larval Tenebrio molitor) and water were provided ad libitum while lizards 

were not involved in experiments. In accordance with the phenology of both species in 

the region (Rivera et al., 2011), all females appeared to be pregnant after observing the 

belly size, copulation marks and conducting an egg palpation (Arnold 2004). 

For each lizard, we measured SVL to the nearest 0.01 mm using digital calipers. 

Lizards were first subjected to an experiment to characterize preferred temperature, 

followed by an experiment to quantify water loss in the following day. No food or water 

were provided during and in-between both experiments. Male lizards were still allowed 

to recover from previous experiments for nine days, providing them food and water ad 

libitum, and then underwent interaction experiments. Only lizards with unbroken or fully 

regenerated tails were used. When accidental autotomy occurred during the 

experiments, subsequent Tp and Wl measurements were excluded from the analyses 

since tail loss may interfere with thermoregulation and rate of water loss since it causes 

changes in the shape and the surface area exposed (Chapple and Swain 2004). 

 

 

Thermal gradient experiment 

 

Lizards of both species were individually exposed to a thermal gradient (ranging 

between 25 and 450C) produced by a 150-W infra-red reflector bulb fixed 25 cm above 

the substrate in the extreme of a 100 x 40 x 30 cm terrarium. Experimental procedures 

followed Carretero et al. (2006). The natural photoperiod was maintained by exposing 

the terraria to external light. The preferred body temperature (Tp) within the gradient 

(Bauwens et al., 1995) was recorded during a single day at ten consecutive hourly 

intervals distributed throughout the period of daily activity observed in the field (7-16 h, 

solar time). The bulb was switched on one hour in advance (6h, solar time) in order to 
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avoid outliers created by the early-morning warm-up (Bauwens et al., 1995). Body 

temperature was recorded using a digital k-termocouple thermometer HIBOK® 18 

(precision 0.1 ºC) by inserting a probe of 1.5 mm in the cloaca. No more than 10 

seconds elapsed between the capture of the animal from the terrarium and the 

measurement of body temperature, to minimize lizard stress and manipulation time in 

recorded Tps. Even if some disturbance is produced during this procedure, effects are 

much smaller than the measurement bias of alternative methods like infrared 

thermometers (Carretero 2012).  

 

 

Water loss experiment 

 

This experiment was conducted in sealed chambers (40x30x20cm) at ~240C and ~35% 

relative humidity created by 100g of silica gel on the bottom side of the lid. 

Temperature and humidity inside this chamber were monitored using a Fluke®-971 

hygrothermometer to the nearest 0.1ºC and 0.1%, respectively. Each individual was 

introduced in a sealed chamber with a false bottom with five grams of silica gel. Water 

loss (Wl) was quantified by weighing the individuals (inside the individual plastic box in 

order to avoid stress during handling) using a digital balance (precision 0.0001g) each 

hour for 12 consecutive hours, overlapping with the activity time of the lizards (see 

above). The weight difference observed between measurement intervals and water 

loss rates directly reflect the amount of cutaneous, pulmonary and ocular water loss. 

Although defecation and urination have a relatively low contribution to total water loss 

(Munsey 1972), these products were not removed from the individual plastic box during 

the experimental process. 

 

 

Interaction experiments 

 

This consisted of a variant of the thermal gradient experiment conducted by monitoring, 

simultaneously, two adult males thermorregulating in the same thermal gradient 

terrarium, to determine the Tb they selected. To minimize the possible effects of body 

size or mass, pairs of males with similar SVL and mass were placed together.  

Two different tests were performed: intra- and interspecific interaction plus the control 

tests provided by the standard thermal gradient experiment conducted before. The 

following combinations of male couples were set: five P. muralis/P. muralis and five P. 
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liolepis/P. liolepis intra-specific experiments as well as ten combinations for the inter-

specific experiments (P. muralis/P. liolepis). 

 

 

Statistical analyses 

 

All data were log-transformed to meet the assumptions of normality, homoscedasticity 

and sphericity as confirmed through Shapiro-Wilk’s test (P>0.05 in all cases), 

multivariate Box M and univariate Levene’s tests (P>0.05 in most cases), and 

Mauchley's tests (P>0.05 in all cases), respectively.   

To test whether significant variation in selected temperatures existed between the 

studied species and sexes, while also examining temporal variation throughout the day, 

we performed Repeated Measures ANOVAs (ANOVAR) with sex and species as 

between-subject factors and time interval as within-subject factor. To investigate if 

there were statistical differences along time and between species and sexes 

concerning the amount of Wl, ANOVAR were performed for instantaneous Wl (relative 

to initial weight, W0; (Wl=(Wn-Wn+1)/W0)) using sex and species as between-subject 

factors and time interval as a within-subject factor. ANOVAs for each time interval of 

cumulative Wl, (Wl= (W0-Wn)/W0) were performed to determine putative differences 

between species and sexes (between-subject factors). We examined both descriptors 

because instantaneous Wl captures the amount of Wl in each time interval, while 

cumulative Wl provides a quantitative measure of the rate at which individuals lose 

water.  

The possible trade-off between Tp and Wl was investigated through correlations 

between Mean Tp and total Wl (calculated as Wl=(W0-W12)/W0) for each sex by species 

group separately.  

In order to investigate whether interaction between intra- or inter-specific individuals 

may lead to a selection of Tb different from Tp, ANOVARs were performed using 

species and test (with classes “alone”, “intraspecific” and “interspecific”) as the 

between-subject factors and time as the within-subject factor. ANCOVAs using SVL, 

initial weight (W0) and SVL and W0 as covariates were also employed for the three 

experiments to test whether size and shape had an influence on the two 

ecophysiological characteristics. Duncan post-hoc tests were used for multiple 

comparisons between species and sexes for each experiment. 

Statistica 7.1 (StatSoft 2005) was used to perform all analyses. Significance was 

evaluated at a-value of 0.05. 
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Results 

 

ANOVA revealed significant sexual dimorphism in SVL in both species, with opposite 

patterns between species; P. liolepis males were longer than females while the 

opposite was observed for P. muralis. Males and females of P. muralis also differed in 

initial weight, females being heavier (Appendix 1). Males of both species only differed 

in SVL while females also differed in W0 (Duncan post-hoc test p<0.05 for all significant 

differences). ANCOVA performed on W0 with sex and species as within-subject factor 

and SVL as covariate revealed that P. muralis is relatively heavier than P. liolepis 

(F1,29= 32.54; p=4*10-6). 

 

 

Preferred temperature 

 

Overall Tp of P. liolepis females was 31.22±0.32ºC while P. liolepis males selected 

31.97±0.51ºC. Mean Tp of P. muralis females was 31.28±0.26ºC and mean Tp of P. 

muralis males was 31.76±0.17ºC (Fig. 1). 

ANOVAR revealed statistical differences along time intervals but not between sexes or 

species (Table 1). Subsequent ANCOVAR using W0 and SVL as covariates did not 

reveal any statistical difference either between species or sexes (Table 1). No 

significant interactions were detected. 

 

 

Water loss 

 

ANOVAR showed statistical significance for time and time*species, indicating that 

species have different Wl patterns along time, even when variation due to SVL is taken 

into account (Table 1). By contrast, using W0 as the covariate rendered the 

time*species effect non-significant, but species, sex and species*sex presented a 

statistically significant effect on Wl, indicating that sexes of each species lose water 

differently. When using both SVL and W0 as covariates, sex and species were the only 

significant effects indicating differences in the patterns of Wl only between species and 

sexes.  

Duncan post-hoc tests between species and sexes using W0 as the covariate only 

revealed significant differences between P. muralis females and P. liolepis males 

(p=0.02). When no covariates were considered, no statistical differences were found.  
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Fig. 1. Daily Tp variation pattern of females and males of P. liolepis (top, continuous line) and P. muralis 

(bottom, dashed line). Whiskers represent ± 0.95 confidence intervals. 

 

 

Examination of the daily patterns of Wl (Fig. 2) revealed that P. liolepis males lost more 

water after the 3-4 time interval while P. muralis only started losing more after the 

second half of the experiment (6-7 time interval). Differences in cumulated Wl between 

species were detected in the last three hours of the experiment once corrected for SVL 

and W0 (Appendix 2). 

 

 

Tp vs. water loss 

 

No significant correlation between mean Tp and total Wl was detected for any sex and 

species revealing no trade-off between both variables (P. liolepis males: r2 = 0.0376; p 

= 0.6171; P. liolepis females: r2 = 0.0194; p = 0.7009; P. muralis males: r2 = 0.0614; p = 

0.5922; P. muralis females: r2 = 0.0009; p = 0.9423). 
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Table 1. ANOVA and ANCOVAs results of Tp and instantaneous Wl data using SVL, W0 or both W0 and SVL as 

covariates. Significant effects are marked with an asterisk (*). Data are -transformed. 

 

 Tp experiment results Wl experiment results 

ANOVAR df F p df F p 

Species 1,30 0.0 0.89 1,21 1.82 0.19 

Sex 1,30 2.5 0.12 1,21 1.41 0.25 

Species*Sex 1,30 0.0 0.90 1,21 0.32 0.58 

Time 9,270 2.3 0.02* 11,231 2.54 0.01* 

Time*Species 9,270 1.1 0.33 11,231 1.89 0.04* 

Time*Sex 9,270 1.6 0.12 11,231 0.89 0.55 

Time*Species*Sex 9,270 1.0 0.42 11,231 1.36 0.19 

ANCOVARs       

Covar. (SVL) 1,29 0.22 0.64 1,20 10
-4
 0.99 

Species 1,29 0.01 0.91 1,20 1.69 0.21 

Sex 1,29 2.43 0.13 1,20 1.33 0.26 

Species*Sex 1,29 0.03 0.87 1,20 0.21 0.65 

Time 9,261 0.33 0.96 11,220 0.38 0.96 

Time*(SVL) 9,261 0.35 0.96 11,220 0.38 0.96 

Time*Species 9,261 1.13 0.34 11,220 1.94 0.04* 

Time*Sex 9,261 1.55 0.13 11,220 0.87 0.58 

Time*Species*Sex 9,261 0.55 0.84 11,220 1.00 0.45 

Covar. (W0) 1,29 0.18 0.68 1,20 32.48 0.00* 

Species 1,29 0.04 0.84 1,20 6.49 0.02* 

Sex 1,29 2.19 0.15 1,20 6.76 0.02* 

Species*Sex 1,29 0.02 0.90 1,20 4.80 0.04* 

Time 9,261 0.81 0.60 11,220 0.48 0.92 

Time*(W0) 9,261 1.00 0.43 11,220 0.66 0.78 

Time*Species 9,261 1.43 0.18 11,220 1.26 0.25 

Time*Sex 9,261 1.57 0.12 11,220 0.93 0.51 

Time*Species*Sex 9,261 1.10 0.36 11,220 1.26 0.25 

Covar. (SVL) 1,28 0.11 0.74 1,19 3.99 0.06 

Covar. (W0) 1,28 0.07 0.80 1,19 41.32 <10
-6
* 

Species 1,28 0.01 0.91 1,19 8.56 0.01* 

Sex 1,28 2.17 0.15 1,19 6.99 0.02* 

Species*Sex 1,28 0.06 0.81 1,19 1.61 0.22 

Time 9,252 0.41 0.93 11,209 0.49 0.91 

Time*(SVL) 9,252 0.47 0.89 11,209 0.54 0.87 

Time*(W0) 9,252 1.11 0.36 11,209 0.81 0.63 

Time*Species 9,252 1.44 0.17 11,209 1.20 0.29 

Time*Sex 9,252 1.52 0.14 11,209 0.90 0.54 

Time*Species*Sex 9,252 0.71 0.70 11,209 0.96 0.49 
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Fig. 2. Variation patterns of instantaneous water loss of females and males of P. liolepis (full line) and P. 

muralis (dashed line) during 12h in sealed chambers. 

 

 

Interaction experiments 

 

When alone in the thermogradient males of both species selected similar Tb (Table 2) 

which differed by 0.21±0.34 ºC. The same was true for the intra-specific test in which 

species’ Tb differed 0.98±0.23ºC (Appendix 3). 

Test type, species and time had a significant effect on Tp of lizards sharing the same 

terrarium (Appendix 3). When introducing SVL as a covariate, the species*test 

interaction remained significant. When using W0 as covariate, only species and test 

remained significant (Appendix 3). Finally, when the ten Tb measurements taken along 

the day were averaged by individual, not only species and test, but also the interaction 

between them, were significant (Fig. 3).  

Duncan post-hoc tests after the ANCOVA using W0 as covariate, showed significant 

differences for P. liolepis between alone and interspecific (p=0.002) tests. Also, the 

results obtained for P. liolepis when alone in the thermogradient were statistically 

different from those of P. muralis in the alone experiment (p=0.003), in the interspecific 

(p=0.008) and intraspecific (p=0.003) experiments. No differences were found among 

tests of P. muralis (p>0.05). Essentially, the Tbs of P. muralis remained similar in the 

three experiments while P. liolepis selected higher Tp in intra- and interspecific 

experiments (32.87±0.25ºC and 33.69±0.23, respectively).  
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Fig. 3. Preferred body temperatures of Podarcis liolepis (full line) and P. muralis (dashed line) in three 

experiments: Alone- one individual per termogradient; Interspecific- one individual of each species per 

termogradient; Intraspecific- two individuals of the same species per termogradient (Post-hoc Duncan test; ns, 

p> 0.05; * p< 0.01). 

 

 

Discussion 

 

The results obtained here confirm previous findings on the variation of Tp in lacertid 

lizards. Most importantly, they provide new insights concerning water ecology and 

highlight the interactive nature of physiological traits. Namely, this work provides 

experimental evidence that asymmetric interactions between and within both species 

have an influence on their thermal ecology. Both aspects have important implications, 

not only for determining the life history mechanisms and demonstrating competitive 

interactions, but also for elucidating the biogeographical patterns of these lacertid 

species. 

Concerning thermal physiology, both species select similar Tps. Since P. muralis and 

P. liolepis are quite divergent phylogenetically, belonging to different clades within the 

genus Podarcis (Harris and Arnold, 1999; Harris et al., 2005) and since 

phylogenetically intermediate Podarcis forms display different Tp (Veríssimo and 
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Carretero 2009), this observation suggests that thermal physiology of both species has 

converged. A phylogenetically-informed comparative analysis including more species 

of the genus is, however, needed in order to confirm this hypothesis, as other factors 

such as habitat use and historical biogeography of both species in question may have 

molded the observed patterns. 

Nonetheless, Tp may vary within a lifespan of individuals (Braña, 1993; Castilla et al., 

1999; Carretero et al., 2005) as our results seem to suggest in terms of Tp of the 

females and along time-period. Females analyzed (pregnant) selected lower Tps than 

males as reported for other populations of the same species (Braña 1993) and for other 

lacertid lizards (Van Damme, et al., 1987; Castilla, et al., 1999; Carretero et al., 2005; 

Carretero, 2006). Such a trend may reflect the physiological requirements of the 

embryos rather than those of the female herself (Van Damme et al. 1986; Castilla et al. 

1999; Gvoždík and Castilla 2001; Carretero et al. 2005; Carretero, Marcos and de 

Prado 2006; Veríssimo and Carretero 2008). However, extrapolating these differences 

between the sexes over time is risky since lizards were caught during the beginning of 

the breeding season and seasonal variation is expected (Harris et al., 1998; Huey, 

1976; Van Damme et al., 1987). 

Also, patterns of Tp along time indicate different putative thermal requirements along 

the day (Fig. 1). In the early hours most individuals select around the same Tp since 

the SE is narrow. This supports the idea that selecting Tp is more important in early 

hours of the day when habitat temperatures are low and the need of thermoregulation 

is a priority (Rismiller and Heldmaier, 1982; Tosini, Jones, and Avery, 1994; Diego-

Rasilla and Pérez-Mellado, 2000; Grbac and Bauwens, 2001). By contrast, from the 

middle until the end of the daily experiment a high SE is observed suggesting less 

thermal restrictions during that period so both species select a wider range of Tp. 

Differences in Tp along time disappear after correcting for body length and mass 

suggesting that previous differences were due to loss of physical condition throughout 

time inside the terrarium, namely in terms of body water. This is also quite realistic in 

field conditions and may explain why the bimodal summer activity contains a higher 

morning peak when compared with the afternoon (Braña 1991; Galán 1995).  

Differences in Wl between species and sexes when corrected for initial weight suggest 

differences in robustness between classes. In addition, divergent trends in the temporal 

patterns of Wl between species were found, likely arising from different compensatory 

mechanisms. P. liolepis males apparently trigger some response to hydric stress on the 

first time interval (1-2 in the graph; Fig. 2A) because the rate of Wl reduced drastically 

during that time. In fact, if the Wl rate was similar for each time interval, the cumulative 
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Wl profile would be linear. This suggests that water already lost had a negative 

feedback on the water loss rate of lizards at the beginning of the experiment because 

the conditions of external temperature and humidity remained constant. Nevertheless, 

after this initial period, P. liolepis individuals were not capable of maintaining such initial 

compensatory mechanism and started losing water at a more constant rate (Fig. 2). 

Conversely, P. muralis showed a higher Wl rate on the second half of the experiment, 

suggesting more long-term compensatory mechanisms in this species.  

Differences in dynamic physiological properties (pulmonary respiration rate, ocular 

evaporation) rather than static (skin permeability) are to be tested as proximate 

compensatory mechanisms ( Bentley and Schmidt-Nielsen 1966; Roberts 1968; Dmi’el 

1972; Eynan and Dmi’el 1993). 

Some studies suggest that Tp and Wl may trade-off intra- and interspecifically between 

closely related species (Warburg 1965; Tracy and Christian 2005; Tracy et al. 2008). 

Yet, this is not the case here. Indeed, thermal rigidity has been reported for many 

lacertids (Van Damme et al. 1989; Gvoždík and Castilla 2001; Carretero et al. 2005; 

Díaz et al. 2006) including P. muralis (Tosini and R. Avery 1993), and is likely to also 

occur in P. liolepis. On the other hand, SVL variation was certainly lower within a given 

population than across populations within the same species (i.e. Kaliontzopoulou, 

Carretero, and Llorente, 2012). Both factors make unlikely the detection of a trade-off, 

at least in the current samples, while a wider interpopulation analysis is recommended. 

The Tp of these two species is probably more influenced by their biogeographic origin 

than by the current environment (Bauwens et al., 1995). Given the overall distribution 

of P. muralis in Europe, which encompasses both Eurosiberian and Mediterranean 

habitat, this species could be expected to occupy a wider range within the Iberian 

Peninsula (Pérez-Mellado, 2002). By contrast, it is limited to the non-Mediterranean 

areas, namely the Atlantic coast and mountains with cooler and wetter climate 

(Llorente et al., 1995; Pérez-Mellado, 2002; Lanuza, Luna, and Lozano, 2012). This 

suggests that the presence of P. liolepis may play a role in confining the southernmost 

limit of the distribution of P. muralis in the Iberian Peninsula. In fact, in other areas of 

Iberia, this species is also coexisting with other Podarcis species but only locally: with 

P. bocagei in Asturias (Galán 1986) and with P. hispanica type 1b in the Central 

System, the later apparently leading to shifts in P. muralis’ habitat use (Martín-Vallejo 

et al. 1995). Investigating the Tp of those species may further elucidate the role of 

thermal requirements in determining the present distribution of P. liolepis. If the latter 

modifies its selected Tb in the presence of other individuals, it would be taken as an 

indication of interference or competition. Nevertheless, other non-ecophysiological 



43 

 

aspects (i.e. behavioural or trophic) may also be involved in a different Tb selection by 

this species.  

Moreover, the current picture of the relationships between both species in the Iberian 

Peninsula may be altered if the predictions for climate change (IPCC 2007) have an 

effect on population densities and/or species ranges. A way of predicting future 

consequences for our findings is considering, for instance, a scenario where 

populational density increases. In the case of P. muralis, usually found in higher 

densities than P. liolepis in northern Iberian Peninsula, this factor would be expected to 

have a negligible effect on the species’ physiology. Yet, for P. liolepis, it is likely that 

the increase in Tb is a consequence of an increased frequency of interactions among 

individuals. Diego-Rasilla (2000) recorded in the field for a population of P. hispanica 

type 1b (according to Kaliontzopoulou et al., 2012) that the time spent basking is 

positively correlated with the difference between body and air temperatures which 

would affect the amount of daily time used for other activities (see also Grbac and 

Bauwens, 2001). Because P. liolepis increase Tb when in the presence of P. muralis 

instead of decreasing, results point to an active response of this species in the 

presence of heterospecifics increasing the time devoted to thermoregulation. This 

pattern contrasts to that found by García-Muñoz and Carretero (submitted) for 

Algyroides marchi, which was displaced by syntopic P. hispanica s.s to a marginal 

position in the thermogradient resulting in a decreased Tp.  

Studies such as this, encompassing several physiological traits, could be used as a 

baseline to understand the complexity of species’ biogeographical patterns. For 

instance, if the climate becomes warmer and drier, P. liolepis would have fewer 

difficulties attaining an elevated Tp in the presence of P. muralis while long term 

compensatory mechanisms would provide same advantage to this species to remain 

active during prolonged drought periods. If climate shifts to colder, wetter conditions, P. 

liolepis would be thermally constrained to respond to the presence of P. muralis by 

increasing Tp. Conversely, P. muralis would not be influenced by P. liolepis regarding 

thermal requirements and would not be exposed to long periods of desiccation.  

Hydric stress is also known to trigger changes in activity patterns leading to changes in 

body temperature, growth  and metabolic rates, affecting whole-organism processes 

(Andrews, 1982; Adolph and Porter, 1993; Lorenzon, 1999). In addition, if such 

changes of thermal conditions occur in a short-time period, Species will not be able to 

reach their Tp and performance will probably be affected hence reducing the probability 

of survival (Diego-Rasilla, 2001). If an animal can keep its body temperature within a 
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range around Tp, it will be favored in terms of natural selection (Van Damme et al., 

1990).  

In conclusion, although further comparative studies will determine to what extent the 

physiology of sympatric lizard species vary and interact across taxa and regions, 

results obtained here already highlight the importance of incorporating water ecology 

experiments (added to the classic thermal ones) and interaction tests in the framework 

of lizard ecophysiological studies. Also, biogeographical analyses and climate change 

forecasts should not ignore this evidence. 
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Supplementary material  

Appendix 1. Descriptive statistics of SVL, W0, Tp and instantaneous Wl at each time interval for each species 
and sex. 

P. liolepis males 
 
 N Mean  Minimum  Maximum  SD  SE  
SVL  9  60.60  56.87  63.65  2.21  0.74  
W0  9  4.72  4.23  5.57  0.41  0.14  
TP9  9  32.77  30.60  36.00  1.61  0.53  
TP10  9  32.71  30.10  35.80  1.83  0.61  
TP11  9  30.94  24.00  35.50  3.84  1.28  
TP12  8  32.88  30.90  35.40  1.83  0.65  
TP13  8  32.15  29.60  34.50  1.56  0.55  
TP14  8  30.35  26.10  33.60  2.13  0.75  
TP15  8  30.98  26.90  34.20  2.52  0.89  
TP16  8  31.31  29.20  35.50  1.97  0.70  
TP17  8  32.43  29.10  37.30  2.57  0.91  
TP18  8  31.51  25.50  37.00  3.82  1.35  
(W8-W9)/W8  9  0.004  0.002  0.01  0.001  0.0005  
(W9-W10)/W8  9  0.002  0.0004  0.004  0.001  0.0004  
(W10-W11)/W8  9  0.002  0.0001  0.01  0.002  0.0006  
(W11-W12)/W8  9  0.004  0.002  0.01  0.003  0.0008  
(W12-W13)/W8  9  0.003  0.0001  0.01  0.002  0.0008  
(W13-W14)W8  9  0.003  0.001  0.01  0.002  0.0005  
(W14-W15)/W8  9  0.003  -0.001  0.01  0.002  0.0007  
(W15-W16)/W8  9  0.003  0.001  0.01  0.001  0.0004  
(W16-W17)/W8  9  0.002  0.0002  0.004  0.001  0.0004  
(W17-W18)/W8  9  0.002  -0.0001  0.004  0.001  0.0005  
(W18-W19)/W8  9  0.001  -0.0003  0.003  0.001  0.0003  
(W19-W20)/W8  9  0.002  -0.0005  0.005  0.001  0.0005  
 
P. liolepis females  
 
SVL  10  55.17  47.94  63.47  4.63  1.46  
W0  10  3.08  1.95  4.05  0.67  0.21  
TP9  10  31.87  29.10  35.20  1.96  0.62  
TP10  10  31.25  30.00  34.10  1.28  0.41  
TP11  10  30.01  24.70  34.40  2.89  0.91  
TP12  10  31.85  25.40  35.70  3.34  1.06  
TP13  10  30.19  24.90  33.40  2.31  0.73  
TP14  10  31.35  28.20  33.10  1.40  0.44  
TP15  10  30.11  26.20  34.60  2.97  0.94  
TP16  10  31.82  29.70  34.70  1.68  0.53  
TP17  10  31.59  28.60  33.70  1.42  0.45  
TP18  10  32.11  29.50  36.40  2.03  0.64  
(W8-W9)/W8  10  0.004  0.001  0.013  0.004  0.0010  
(W9-W10)/W8  10  0.002  0.001  0.004  0.001  0.0004  
(W10-W11)/W8  10  0.003  -0.004  0.010  0.004  0.0010  
(W11-W12)/W8  10  0.003  0.0001  0.010  0.002  0.0006  
(W12-W13)/W8  10  0.002  0.0002  0.004  0.001  0.0004  
(W13-W14)W8  10  0.002  0.001  0.005  0.001  0.0005  
(W14-W15)/W8  10  0.002  -0.005  0.005  0.003  0.0009  
(W15-W16)/W8  10  0.004  0.002  0.010  0.002  0.0006  
(W16-W17)/W8  10  0.003  0.001  0.010  0.002  0.0007  
(W17-W18)/W8  10  0.002  0.0003  0.004  0.001  0.0004  
(W18-W19)/W8  10  0.001  0.0002  0.003  0.001  0.0003  
(W19-W20)/W8  10  0.003  -0.0004  0.009  0.003  0.0009  
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Appendix 1. Continued  
 
P. muralis males  
 
 N Mean Minimum  Maximum  SD  SE  
SVL  7  55.64  46.07  66.45  6.20  2.34  
W0  7  6.09  3.55  9.43  2.31  0.87  
TP9  7  31.74  29.50  33.40  1.32  0.50  
TP10  7  32.06  30.80  33.30  0.80  0.30  
TP11  7  32.31  30.70  32.90  0.77  0.29  
TP12  7  31.64  30.50  34.40  1.32  0.50  
TP13  7  33.06  30.00  35.20  1.82  0.69  
TP14  7  31.71  30.90  33.20  0.82  0.31  
TP15  7  31.47  29.20  34.40  1.76  0.66  
TP16  7  31.30  28.60  34.70  2.12  0.80  
TP17  7  31.94  29.20  35.40  2.04  0.77  
TP18  7  30.39  26.60  32.10  1.85  0.70  
(W8-W9)/W8  7  0.004  0.001  0.006  0.002  0.0007  
(W9-W10)/W8  7  0.002  -0.0004  0.005  0.002  0.0007  
(W10-W11)/W8  7  0.003  0.001  0.006  0.002  0.0006  
(W11-W12)/W8  7  0.002  0.0005  0.005  0.002  0.0006  
(W12-W13)/W8  7  0.003  0.001  0.006  0.002  0.0008  
(W13-W14)W8  7  0.004  0.001  0.006  0.002  0.0008  
(W14-W15)/W8  7  0.001  -0.002  0.004  0.003  0.0010  
(W15-W16)/W8  7  0.004  0.001  0.012  0.004  0.0015  
(W16-W17)/W8  7  0.003  0.0003  0.006  0.002  0.0008  
(W17-W18)/W8  7  0.004  0.001  0.008  0.003  0.0010  
(W18-W19)/W8  7  0.002  -0.002  0.005  0.003  0.0008  
(W19-W20)/W8  7  0.003  0.0003  0.009  0.003  0.0012  
 
P. muralis females  
 
SVL  8  61.06  57.42  64.82  3.19  1.13  
W0  8  8.12  3.76  11.15  2.92  1.03  
TP9  8  32.81  31.2  34.60  1.12  0.40  
TP10  8  32.19  30.70  33.80  1.003  0.35  
TP11  8  31.31  29.90  32.60  0.99  0.35  
TP12  8  31.98  30.90  34.00  1.03  0.36  
TP13  8  30.48  27.50  32.50  1.91  0.67  
TP14  8  30.65  27.80  33.40  1.85  0.65  
TP15  8  30.93  28.70  32.90  1.70  0.60  
TP16  8  32.28  29.80  36.00  2.20  0.78  
TP17  8  30.05  25.40  32.60  2.19  0.78  
TP18  8  30.15  23.60  31.80  2.70  0.95  
(W8-W9)/W8  8  0.002  0.0008  0.004  0.001  0.0004  
(W9-W10)/W8  8  0.002  0.0005  0.004  0.001  0.0004  
(W10-W11)/W8  8  0.002  0.0008  0.003  0.001  0.0002  
(W11-W12)/W8  8  0.002  0.0003  0.003  0.001  0.0003  
(W12-W13)/W8  8  0.002  0.0001  0.003  0.001  0.0004  
(W13-W14)W8  8  0.002  0.0010  0.004  0.001  0.0004  
(W14-W15)/W8  8  0.002  0.0003  0.003  0.001  0.0004  
(W15-W16)/W8  8  0.002  0.0002  0.005  0.002  0.0006  
(W16-W17)/W8  8  0.002  0.0002  0.004  0.001  0.0005  
(W17-W18)/W8  8  0.002  0.0009  0.003  0.001  0.0003  
(W18-W19)/W8  8  0.001  0.0007  0.003  0.001  0.0003  
(W19-W20)/W8  8  0.002  0.0008  0.003  0.001  0.0003  
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Appendix 2. ANOVA cumulated Wl of each time intervals between species and sexes using the covariates SVL 
and W0. (W0-W1)/W0. 

  (W0-W1)/W0 (W0-W2)/W0 (W0-W3)/W0 (W0-W4)/W0 (W0-W5)/W0 (W0-W6)/W0 

 df F p F p F p F p F p F p 

Species 1, 30 1.54 0.22 3.16 0.09 0.36 0.55 3.38 0.08 2.29 0.14 3.00 0.09 

Sex 1, 30 1.9 0.18 0.09 0.77 0.3 0.59 0.49 0.49 0.57 0.46 1.02 0.32 

Species*Sex 1, 30 0.1 0.75 0.75 0.39 0.19 0.67 0.70 0.41 0.43 0.52 1.12 0.30 

SVL (covar.) 1, 29 0.07 0.79 0.04 0.85 0.11 0.76 0.10 0.75 0.08 0.78 0.05 0.83 

Species 1, 29 1.52 0.23 3.08 0.09 0.37 0.55 3.33 0.08 2.26 0.14 2.94 0.10 

Sex 1, 29 1.85 0.18 0.09 0.77 0.29 0.59 0.47 0.50 0.55 0.46 0.99 0.33 

Species*Sex 1, 29 0.17 0.69 0.66 0.42 0.28 0.60 0.73 0.40 0.48 0.49 0.97 0.33 

W0 (covar.) 1, 29 5.99 0.02* 7.70 0.01 2.36 0.14 6.47 0.02 7.30 0.01* 11.7 <10
-3
* 

Species 1, 29 0.61 0.44 0.33 0.57 0.42 0.52 0.15 0.70 0.54 0.47 0.97 0.33 

Sex 1, 29 3.35 0.08 0.01 0.94 0.61 0.44 1.26 0.27 1.47 0.23 2.75 0.11 

Species*Sex 1, 29 1.10 0.30 0.51 0.48 0.22 0.65 0.40 0.53 0.76 0.39 0.70 0.41 

SVL (covar.) 1, 28 1.77 0.19 1.93 0.18 0.95 0.34 2.08 0.16 2.16 0.15 2.99 0.09 

W0 (covar.) 1, 28 7.83 0.01* 9.83 <10
-3
* 3.20 0.08 8.66 0.01 9.65 <10

-3
* 15.4 <10

-3
* 

Species 1, 28 1.2 0.28 0.81 0.37 0.75 0.39 0.54 0.47 1.18 0.29 1.99 0.17 

Sex 1, 28 3.74 0.06 0.03 0.87 0.7 0.41 1.51 0.23 1.76 0.20 3.31 0.08 

Species*Sex 1, 28 0.25 0.62 0.03 0.87 0.01 0.94 <10
-3
* 0.95 0.08 0.78 0.03 0.87 

  (W0-W7)/W0 (W0-W8)/W0 (W0-W9)/W0 (W0-W10)/W0 (W0-W11)/W0 (W0-W12)/W0 

 df F p F p F p F p F p F p 

Species 1, 30 3.79 0.06 3.84 0.06 3.31 0.08 2.69 0.11 2.32 0.14 2.52 0.12 

Sex 1, 30 0.60 0.44 0.52 0.48 0.39 0.54 0.65 0.43 0.69 0.41 0.63 0.43 

Species*Sex 1, 30 0.84 0.37 1.53 0.23 1.6 0.22 1.97 0.17 2.05 0.16 2.29 0.14 

SVL (covar.) 1, 29 0.15 0.70 0.10 0.75 0.14 0.71 0.29 0.60 0.32 0.57 0.06 0.80 

Species 1, 29 3.75 0.06 3.77 0.06 3.27 0.08 2.70 0.11 2.35 0.14 2.47 0.13 

Sex 1, 29 0.59 0.45 0.50 0.49 0.38 0.54 0.63 0.43 0.68 0.42 0.61 0.44 

Species*Sex 1, 29 0.94 0.34 1.41 0.24 1.55 0.22 2.09 0.19 2.22 0.15 1.89 0.18 

W0 (covar.) 1, 29 11.6 <10
-3
* 17.2 <10

-4
* 18 <10

-4
* 18.1 <10

-4
* 16.9 <10

-4
* 24.4 <10

-5
* 

Species 1, 29 0.65 0.43 1.48 0.23 1.93 0.18 2.42 0.13 2.47 0.13 3.99 0.06 

Sex 1, 29 1.94 0.17 2.21 0.15 1.93 0.18 2.61 0.12 2.61 0.12 3.12 0.09 

Species*Sex 1, 29 0.93 0.34 0.96 0.33 0.98 0.33 0.73 0.40 0.58 0.45 1.01 0.32 

SVL (covar.) 1, 28 3.93 0.06 5.21 0.03* 5.93 0.02 * 7.48 0.01* 7.28 0.01* 6.86 0.01 * 

W0 (covar.) 1, 28 16.4 <10
-4
* 24.8 <10

-5
* 26.7 <10

-5
* 29.1 <10

-5
* 27.20 <10

-5
* 36.10 <10

-6
* 

Species 1, 28 1.70 0.20 3.31 0.08 4.21 0.05 5.47 0.03* 5.49 0.03 * 7.64 0.01 * 

Sex 1, 28 2.50 0.13 2.98 0.10 2.72 0.11 3.81 0.06 3.78 0.06 4.39 0.05 

Species*Sex 1, 28 0.05 0.83 0.02 0.89 0.01 0.92 0.02 0.90 0.04 0.83 0 0.95 
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Appendix 3. ANOVAR results from the Tp interaction experiment data with and without SVL and W0 as 
covariates. Significant effects are marked with an asterisk (*). Data are log-transformed. 

 Tp experiment results Wl experiment results 

ANOVAR df F p df F p 

Species 1,30 0.0 0.89 1,21 1.82 0.19 

Sex 1,30 2.5 0.12 1,21 1.41 0.25 

Species*Sex 1,30 0.0 0.90 1,21 0.32 0.58 

Time 9,270 2.3 0.02* 11,231 2.54 0.01* 

Time*Species 9,270 1.1 0.33 11,231 1.89 0.04* 

Time*Sex 9,270 1.6 0.12 11,231 0.89 0.55 

Time*Species*Sex 9,270 1.0 0.42 11,231 1.36 0.19 

ANCOVARs       

Covar. (SVL) 1,29 0.22 0.64 1,20 10
-4 

0.99 

Species 1,29 0.01 0.91 1,20 1.69 0.21 

Sex 1,29 2.43 0.13 1,20 1.33 0.26 

Species*Sex 1,29 0.03 0.87 1,20 0.21 0.65 

Time 9,261 0.33 0.96 11,220 0.38 0.96 

Time*(SVL) 9,261 0.35 0.96 11,220 0.38 0.96 

Time*Species 9,261 1.13 0.34 11,220 1.94 0.04* 

Time*Sex 9,261 1.55 0.13 11,220 0.87 0.58 

Time*Species*Sex 9,261 0.55 0.84 11,220 1.00 0.45 

Covar. (W0) 1,29 0.18 0.68 1,20 32.48 0.00* 

Species 1,29 0.04 0.84 1,20 6.49 0.02* 

Sex 1,29 2.19 0.15 1,20 6.76 0.02* 

Species*Sex 1,29 0.02 0.90 1,20 4.80 0.04* 

Time 9,261 0.81 0.60 11,220 0.48 0.92 

Time*(W0) 9,261 1.00 0.43 11,220 0.66 0.78 

Time*Species 9,261 1.43 0.18 11,220 1.26 0.25 

Time*Sex 9,261 1.57 0.12 11,220 0.93 0.51 

Time*Species*Sex 9,261 1.10 0.36 11,220 1.26 0.25 

Covar. (SVL) 1,28 0.11 0.74 1,19 3.99 0.06 

Covar. (W0) 1,28 0.07 0.80 1,19 41.32 <10
-6
* 

Species 1,28 0.01 0.91 1,19 8.56 0.01* 

Sex 1,28 2.17 0.15 1,19 6.99 0.02* 

Species*Sex 1,28 0.06 0.81 1,19 1.61 0.22 

Time 9,252 0.41 0.93 11,209 0.49 0.91 

Time*(SVL) 9,252 0.47 0.89 11,209 0.54 0.87 

Time*(W0) 9,252 1.11 0.36 11,209 0.81 0.63 

Time*Species 9,252 1.44 0.17 11,209 1.20 0.29 

Time*Sex 9,252 1.52 0.14 11,209 0.90 0.54 

Time*Species*Sex 9,252 0.71 0.70 11,209 0.96 0.49 
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Abstract 

 

Many reptilian species are able to regulate their body temperature by using the 

environmental conditions of their ecological niche. Some are even able to keep it within 

a narrow range near the preferred body temperatures (Tp) attained in the absence of 

thermoregulatory constraints. In order to understand the thermoregulatory strategy and 

thermal requirements of species, field body temperatures (Tb) must be compared with 

Tp. 

Tb of P. liolepis and P. muralis individuals was assessed during a field survey in a 

sympatric area in northern Catalonia, Spain, and compared with known Tp. Abiotic 

factors (air and substrate temperature and relative humidity of the air) were recorded 

on each capture. 

Tb in the field was lower than Tp for both species. Male P. liolepis and P. muralis tend 

to select higher Tb and Tp than females. Males and females of P. liolepis and P. 

muralis selected similar Tb in the field. No differences on the relevance of each abiotic 

factor for each species or sex were detected. The Tb of both species and sexes was 

positively correlated with air and substrate temperature and negatively correlated with 

humidity.  

The importance of a bigger sample regarding P. liolepis individuals is stressed because 

it would allow unequivocal comparison of Tb among species in the sympatry area.  

 

 

Keywords: Field body temperature, preferred temperature, sympatry, Podarcis 
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Introduction 

 

Variations of environmental conditions over space and time directly influence 

physicochemical processes of ectotherms (Schmidt-Nielsen, 1997). Some ectotherms 

are not able to keep a body temperature (Tb) different from the ambient temperature 

and thus are called thermoconformers. On the other hand, perfect thermorregulaters 

are able to keep a constant Tb over a range of air or soil temperatures (Hertz, Huey, & 

Stevenson, 1993). As an example, lacertids in temperate climates are accurate and 

efficient thermorregulaters (Van Damme, Bauwens, & Verheyen, 1990) while several 

tropical and nocturnal lizards do not termorregulate carefully while active ( Huey, 1982; 

Gil, Guerrero, & Pérez-Mellado, 1994). 

For thermorregulating lizards, keeping an adequate Tb, i.e. close to preferred body 

temperature (Tp) (which is attained in the absence of thermoregulatory constraints; 

Van Damme 1989), is vital because it allows keeping the internal physicochemical 

processes at high performance rates (Huey, 1976; Gvoždík & Castilla, 2001; Veríssimo 

& Carretero, 2008; Angilletta Jr., 2009).  

However, the Tb selected in the field by lizards is constrained by the thermal 

environment (Christian, Weavers, Green, & Bedford, 1996; Tosini & Avery, 1996). In 

consequence, Tb in the field may vary according to external factors as the time of day 

and season but also to internal factors as reproductive condition and feeding status 

(Licht, Dawson, & Shoemaker, 1966; Huey & Slatkin, 1976; Huey, 1982). These factors 

influence the precision of Tb selection, i.e. the difference between Tb and Tp (Sievert & 

Hutchinson, 1988, but see Hertz et al. 1993). 

In order to comprehend the thermoregulatory strategy of a species it is necessary to 

determine (i) its preferred body temperature (Tp) which is reached when there are no 

thermoregulatory constraints (Huey & Stevenson, 1979; Van Damme, Bauwens, & 

Verheyen, 1987; Bauwens et al., 1995) (ii) body temperature attained in the field (Tb), 

and (iii) the distribution of operative body temperatures (Te) which is obtained by 

placing copper lizard models in all available microhabitats at all times (Hertz et al., 

1993). Certainly, even when different species share the same habitat, they may display 

different thermoregulatory strategies (Avery, 1978; Pollo & Pérez-Mellado, 1989; Van 

Damme et al., 1990; Castilla, Van Damme, & Bawens, 1999; Grbac & Bawens, 2001).  

Podarcis liolepis and P. muralis are two lacertid species separated by more than 8my 

(Kaliontzopoulou, Pinho, Harris, & Carretero, 2011) found in sympatry in mountains of 

northeast Catalonia, NE Iberia (Llorente, Montori, Santos, & Carretero, 1995; Diego-

Rasilla, 2009). P. muralis has the widest range among species of the genus but in 
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Iberia it is restricted to the mountain ranges of the north and centre (“IUCN,” 2012) 

while P. liolepis occupies Mediterranean areas but reaches mountain areas up to 1700 

metres in NE Iberia (Llorente et al., 1995). Although P. muralis displays saxicolous 

habits across its range, in Iberian Peninsula it tends to be more ground dweller in 

sympatry areas while the other species occupy the rocks with more intensity (Diego-

Rasilla, 2009). 

In experiments conducted under controlled conditions, individuals from both species 

selected for similar Tp when alone. However, P. liolepis tended to select for higher 

temperatures when in the presence of either conspecifics or P. mularis (Carneiro et al., 

unpub.). This suggests that an asymmetric interaction between both species could 

affect the thermal ecology of P. liolepis.  

In this study we aim at determining the field Tb of P. liolepis and P. muralis in a 

sympatry area during activity period in order to assess whether the pattern of Tp 

recorded in the lab (Carneiro et al. unpub.) remains under natural conditions.  

 

 

Material and Methods 

 

During the beginning of May 2012, active adult specimens of two Podarcis species 

were captured in a sympatry area in the Montseny massif, a mountain range within the 

pre-Pyrenean region of Catalonia, NE Spain. In the collection site, Turó del Home 

(41°46′26″N 2°27′43″E; 1700m altitude), the highest peak of this mountain range, P. 

liolepis and P. muralis are found in syntopy (personal observations). The study area is 

dominated by boreoalpine vegetation community mainly composed of shrubs and 

herbs and scattered presence of pine trees (Roijals et al., 2002).  

Adult individuals of P. liolepis (larger than 38mm in snout-vent length (SVL), Carretero, 

& Llorente, 1993; Kaliontzopoulou, et al., 2006) and P. muralis (larger than 46mm, 

Diego-Rasilla, 2009) were captured by noose or by hand. The reproductive status of 

females was not determined but considering the phenology of both species, it is likely 

that they would be in the beginning of the reproductive period (Diego-Rasilla, 2009) 

since no external evidences of pregnancy (i.e. copulation scars, deformed abdomen) 

were observed.  

Tb of each individual was taken immediately after capture by inserting a probe of a 

digital-termocouple thermometer HIBOK®18 (precision ±0.1ºC) 2 mm in the cloaca 

within ten seconds after capture. Subsequently, substrate temperature (Ts) in the place 

of first observation was taken using the same thermometer while air temperature (Tair) 
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and the relative humidity (RH) were measured using a Fluke®-971 Hygrothermometer 

50 cm placed above ground level. All measurements were taken in the shade. The 

solar time was registered along with the sex and species of the lizard. A team of two or 

three people was used in order to perform all measurements promptly. 

The specimens collected were marked with a number on the belly and were taken to 

the facilities of the Faculty of Biology, University of Barcelona in order to measure their 

SVL using digital callipers (to the nearest 0.01mm) and their weight with a digital 

balance (precision ±0.0001g). Afterwards they were released in the collection site. 

Normality of the data was determined through Kolmogorov-Smirnov and Lilliefors tests 

and since this assumption was not fully met, data were log-transformed, maintaining 

the criterion of the work on preferred temperatures in the laboratory (Carneiro et al., 

unpub.). Homoscedasticity was confirmed through univariate Levene’s tests (P>0.05 in 

all cases).  

Correlation matrixes were built to determine potential correlation between SVL, W0, Tb, 

Tair, Ts and HR. We first analysed partial correlations of Tb of both species and sexes 

together, with each environmental variable (Tair-Tb; Ts-Tb; RH-Tb) in order to 

determine which variable influences most the Tb of Podarcis in the Montseny. Then, 

partial correlations of Tb of each species separately were done; and finally, partial 

correlations of Tb of each sex and species. In order to test whether all individuals were 

captured in similar weather conditions, ANOVAs were performed using Tair, Ts or RH 

as within-subject factors and Species and Sex as between-subject factors. 

To test for possible significant variation of Tb in the field between the studied species 

and sexes, we performed ANOVA with Species and Sex as factors and Tb as 

dependent variable. In addition, to ascertain possible size-mass effect on the selection 

of Tb we performed ANCOVAs using W0, SVL, or both W0 and SVL as covariates. The 

effects of the covariates on Tb were assessed through ANOVAs for each covariate 

alone using Tb as within-subject factor.  

All analyses were performed using Statistica 7.1 (StatSoft, 2005). 

 

 

Results 

 

Eight adult individuals of P. liolepis (four males and four females) and 42 of P. muralis 

(22 males and 20 females) were captured. 

ANOVAs on the covariates revealed W0 as statistically different between species and 

sexes while for SVL no statistical differences between species and sexes were found 
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(Appendix 1). ANCOVA on W0 with SVL as covariate revealed statistical differences 

between species (F1,45= 12.94; p=<10-3), P. muralis being more robust than P. liolepis, 

and between sexes (F1,45=14.12; p=<10-3), males being more robust than females. 

The Tb of both species and sexes was positively correlated with Tair and Ts and 

negatively correlated with RH (Table 1). When analysing species separately, Tb of P. 

muralis follows the same trend while Tb of P. liolepis is only negatively correlated with 

HR. P. muralis revealed the same pattern even when both sexes were analysed 

separately while Tb of male and female P. liolepis was not correlated with any 

environmental variable. In addition, it seems that the weight and length do not influence 

the thermoregulatory processes of these species because there are no significant 

results except for W0 when accounting for species and sexes together (Table 1). 

 
 
 
Table 1. Regressions of Tb with W0, SVL and with each environmental variable log-transformed (Tair, Ts, RH; see 

abbreviations in Material and Methods). * indicates p<0.05. 

 

Type of 

correlation 
Sex Species Variables r

2
 p Regression equation 

All data together Both sexes Both species 

W0 : Tb  0.10 0.02* y = 0.2084 + 0.3439*x 

SVL: Tb 0.02 0.30 y = 1.0868 + 0.5298*x 

Tair : Tb 0.22 <10
-3
* y = 2.1601 + 0.3869*x 

 Ts : Tb 0.34 <10
-5
* y = 1.6549 + 0.5488*x 

 HR : Tb 0.33 <10
-4
* y = 4.7782 - 0.4122*x 

Between species 

(sexes together) 
Both sexes 

P. muralis 
W0 : Tb 

0.04 0.18 y = 2.9365 + 0.2277*x 

P. liolepis 0.35 0.12 y = 2.6326 + 0.466*x 

P. muralis 
SVL: Tb 

0.01 0.55 y = 1.8769 + 0.3384*x 

P. liolepis 0.04 0.65 y = -0.2276 + 0.8384*x 

P. muralis 
 Tair : Tb 

0.22 <10
-3
* y = 2.1793 + 0.3872*x 

P. liolepis 0.36 0.12 y = 1.9746 + 0.4158*x 

P. muralis 
 Ts : Tb 

0.35 <10
-5
* y = 1.7063 + 0.5384*x 

P. liolepis 0.50 0.05 y = 0.8388 + 0.7916*x 

P. muralis 
 HR : Tb 

0.28 <10
-4
* y = 4.7071 - 0.3887*x 

P. liolepis 0.71 0.01* y = 5.0717 - 0.5142*x 
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Table 1. Continued 

 

Males and females of P. liolepis and P. muralis selected similar Tb in the field (Table 

2). Both SVL and W0 showed no effect on the Tb selected by species and sexes in the 

field. The same was verified for the environmental variables (Table 2). 

 

Table 2. ANOVA and ANCOVAs for Tb between species and sexes, with and without the covariates SVL and/or 

W0, Tair, Ts and RH. 

 

 df F p 

ANOVA    

Species 1,46 1.79 0.19 

Sex 1,46 2.44 0.12 

Species*Sex 1,46 1.56 0.22 

ANCOVA 

Covar Log (SVL) 

Log SVL 1,45 0.21 0.65 

Species 1,45 1.34 0.25 

Sex 1,45 2.06 0.16 

Species*Sex 1,45 1.42 0.24 

ANCOVA 

Covar. Log (W0) 

Log W0 1,45 1.91 0.17 

Species 1,45 0.24 0.63 

Sex 1,45 0.58 0.45 

Species*Sex 1,45 0.86 0.36 

 

Between species 

and sexes 

M P. muralis 

W0 : Tb 

0.06 0.26 y = 2.8258 + 0.3023*x 

F P. muralis 0.02 0.55 y = 3.0323 + 0.1562*x 

M P. liolepis <10
-4
* 0.99 y = 3.2432 + 0.0077*x 

F P. liolepis 0.21 0.55 y = 2.562 + 0.5093*x 

M P. muralis 

SVL: Tb 

0.12 0.12 y = -1.788 + 1.2439*x 

F P. muralis 0.07 0.25 y = 7.1077 - 0.9587*x 

M P. liolepis 0.26 0.49 y = 9.9285 - 1.6571*x 

F P. liolepis 0.12 0.65 y = -4.8559 + 1.9746*x 

M P. muralis 

 Tair : Tb 

0.22 0.03* y = 2.0969 + 0.4164*x 

F P. muralis 0.21 0.04* y = 2.2648 + 0.3561*x 

M P. liolepis 0.35 0.41 y = 2.4871 + 0.2701*x 

F P. liolepis  0.57 0.27 y = 1.531 + 0.542*x 

M P. muralis 

 Ts : Tb 

0.37 <10
-3
* y = 1.4917 + 0.6143*x 

F P. muralis 0.33 0.01* y = 1.9078 + 0.4661*x 

M P. liolepis 0.65 0.19 y = 1.5594 + 0.5719*x 

F P. liolepis 0.21 0.54 y = 0.2956 + 0.9587*x 

M P. muralis 

 HR : Tb 

0.31 0.01* y = 4.9362 - 0.4511*x 

F P. muralis 0.26 0.02* y = 4.4968 - 0.3325*x 

M P. liolepis 0.73 0.14 y = 4.6488 - 0.3816*x 

F P. liolepis 0.75 0.13 y = 5.0646 - 0.5285*x 
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Table 2. Continued 

ANCOVA 

Covar. Log (SVL) and Log (W0) 

Log SVL 1,44 0.77 0.38 

Log W0 1,44 2.47 0.12 

Species 1,44 0.09 0.77 

Sex 1,44 0.26 0.62 

Species*Sex 1,44 0.65 0.42 

ANCOVA    

Covar. Log (Tair) 1,45 13.14 <10
-3
* 

Species 1,45 2.63 0.11 

Sex 1,45 1.68 0.20 

Species*Sex 1,45 1.75 0.19 

ANCOVA    

Covar. Log (Ts) 1,45 24.66 <10
-5
* 

Species 1,45 3.63 0.06 

Sex 1,45 1.62 0.21 

Species*Sex 1,45 1.36 0.25 

ANCOVA    

Covar. Log (HR) 1,45 20.81 <10
-5
* 

Species 1,45 2.28 0.14 

Sex 1,45 0.97 0.33 

Species*Sex 1,45 1.19 0.28 

 

 

Table 3 shows the mean values of each variable and covariate used on all statistical 

analyses. Note that P. liolepis females recorded the lowest values for all variables 

included in the study. 

 

Table 3. Descriptive statistics of W0, SVL and environmental variables for each sex of P. liolepis and P. muralis. 

Numbers indicate mean ± SE and range. See Material and Methods section for variables’ abbreviations. 

 

 P. liolepis P. muralis 

 Males 

N=4 

Females 

N=4 

Males 

N=22 

Females 

N=20 

W0 3.64 ± 0.26 

2.69-4.16 

 

2.43 ± 0.20 

2.12-3.01 

 

4.29 ± 0.17 

2.37-6.07 

 

3.69 ± 0.16 

2.45-5.13 

 

SVL 56.48 ± 1.21 

53.15-60.16 

 

53.71 ± 0.41 

51.99-55.87 

 

58.14 ± 0.78 

47.41-64.32 

 

57.01 ± 0.77 

50.56-63.47 

 

Tb 25.26 ± 1.89 

20.30-30.40 

 

20.50 ± 1.74 

16.70-24.10 

 

26.73 ± 1.21 

14.00-34-60 

 

25.90 ± 1.14 

16.70-32.80 

 

Tair 17.12 ± 2.78 

11.50-26.60 

 

15.63 ± 1.95 

12.40-21.30 

 

16.73 ± 0.94 

10.20-23.00 

 

15.73 ± 0.96 

10.60-23.00 
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Table 3. Continued    

Ts 19.22 ± 2.05 

15.90-26.70 

 

17.00 ± 0.69 

15.30-18.30 

 

18.35 ± 1.07 

12.10-32.70 

N=22 

17.75 ± 1.00 

9.60-24.90 

 

HR 45.28 ± 7.36 

27.10-62.20 

 

50.23 ± 6.31 

32.70-60.70 

 

44.17 ± 2.96 

28.40-72.30 

 

46.96 ± 3.22 

27.60-69.30 

 

 

 

Significant differences in terms of Tair, Ts and RH were not detected for each species 

and sex supporting the fact that they were captured in similar microenvironments in 

terms of Tair, Ts and HR conditions (Table 4). 

 

 

Table 4. ANOVAs for Tair, Ts and HR (data log-transformed). 

 df F p 

Tair    
Species 1,47 0.08 0.78 
Sex 1,47 0.61 0.44 
Species*sex 1,47 0.04 0.84 

 
Ts 
Species 1,46 0.13 0.72 
Sex 1,46 0.76 0.39 
Species*Sex 1,46 0.25 0.62 

 
HR 
Species 1,47 0.001 0.97 
Sex 1,47 1.36 0.25 
Species*Sex 1,47 0.46 0.50 

 

 

Comparisons of Tp (Carneiro et al, unpub) revealed P. muralis’ Tb was approximately 

5ºC below Tp while for P. liolepis higher differences in mean and standard error 

between Tb and Tp were registered (Table 5). Males of both species tend to select 

higher Tb and Tp than females.  

 

 

Discussion 

 

Both species selected similar Tb in the sympatry area possibly due to the 

environmental constraints. The study area is located on a mountain range and 

characterized by higher precipitation and relative humidity of the air, and lower air 

temperatures. Such abiotic conditions are known to constrain species’ ranges and 
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Table 5. Comparison between mean Tp±SE (ºC) selected in the laboratory and Tb±SE (ºC) in the field of P. 

liolepis and P. muralis. 

 

 P. liolepis P. muralis 

 Males Females Males Females 

Tp 
31.97 ± 0.51 

n=9 

31.22 ± 0.32 

n=10 

31.76 ± 0.17 

n=7 

31.28 ± 0.26 

n=8 

Tb 
25.26 ± 1.89 

n=5 

20.50 ± 1.74 

n=4 

26.73 ± 1.21 

n=22 

25.90 ± 1.14 

n=20 

Difference 6.71 ± 1.38 10.72 ± 1.42 5.03 ± 1.04 5.38 ± 0.88 

 

 

distributions along with their physiological performance due to more severe conditions 

than in lowland. For instance, anoles lizards living in high altitudes spend more time 

basking than lowland populations to compensate for the lower air temperatures and 

cloudy weather (Huey, 1976). Temperate species maintain lower Tb during activity in 

high altitude because Tair is lower than at sea level (Gvoždík, 2002; Macnab, 2002). In 

addition, in altitude the reproductive peak may occur later, when the environmental 

conditions are more adequate (Carretero, 2006). 

Comparing the Tb of P. liolepis and P. muralis when active in the field with data on Tp 

obtained in the previous reproductive season (Carneiro et al., unpub.), Tb attained by 

the lizards fell quite lower than those preferred in the photo-thermal gradient regardless 

the species and sex. Similar results have been observed in other works on lacertid 

lizards (Van Damme et al., 1987; Grbac & Bauwens, 2001).  

This may relate to seasonal variation since this study was conducted in the beginning 

of the activity season when thermal constraints are expected to be high. This may also 

occur during autumn when environmental conditions are similarly likely to impose 

constraints to thermoregulation. This has been confirmed with P. muralis in other areas 

of its European distribution and with other Podarcis species. For instance, the Tb 

attained by P. muralis males and females on an island in Croatia during autumn was 

30.4± 0.4 ºC (n = 46) and P. muralis was shown to maintain Tb closer to Tp than P. 

melisellensis (Grbac & Bawens, 2001). 

On the other hand, the Tb attained during the reproductive season is higher suggesting 

few thermoregulatory constrains. For instance, P. muralis males in northern Spain 

during the reproductive season registered Tb around 33.58 ± 1.79ºC (n=48) and did not 

differ from Tp in males and non-pregnant females (Braña, 1993). Tp of P. liolepis males 

from NE Iberia (Bellaterra, Cerdanyola del Valles, UTM 31TDF2395, 150 m altitude) 
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collected during the peak of oviposition was around 33.75 ± 0.24ºC (n=9) (Carretero, 

Marcos, & de Prado, 2006). The discrepancy of Tp values with our results (Carneiro et 

al., unpub.; Table 5) may be related to the month or the location where each study was 

conducted (Carretero, 2006).  

In northern Spain during summer the Tp of P. muralis males was around 33.77 ± 

1.79ºC (n =135) and pregnant females 32.62 ± 1.58ºC (Braña, 1993) while in Central 

Spain, also during  summer, it was 34.15ºC (n=15; males and females) (Bawens et al., 

1995). The results by Bauwens et al. (1995) cannot be used in comparison because 

they pooled males and females together. However, the discrepancy of Tp between the 

northern Spain population of P. muralis (Braña, 1993) and the population from the 

Montseny Park (Table 5) suggest seasonal variation on the Tp attained. A lower Tp in 

spring than in the summer has also been reported for another population of P. muralis 

in Slovenia (Osojnik, Žagar, Vrezec, & Carretero, 2010).  

Nonetheless, the small sample size of P. liolepis does not allow a full comprehension of 

the thermoregulatory behaviour of this species and the influence of environmental 

conditions on the selection of Tb and its impacts on lizard’s performance. Such low 

number of captures is likely due to lower density of this population in comparison to P. 

muralis’ in this specific sympatry area (unpublished data). P. muralis was found in high 

populational density in Turó del Home while P. liolepis was scarce. High population 

densities of Podarcis are known to affect the thermoregulatory patterns and time 

budgets along the day when thermal constraints are weak. For instance, P. hispanica 

type Ib spends more time basking when population density is higher and thus, the time 

available for feeding decreases (Avery, 1982; Diego-Rasilla & Pérez-Mellado, 2000). In 

addition, in higher densities, individuals spend more time interacting which may reduce 

the efficiency of basking (Diego-Rasilla & Pérez-Mellado, 2000).  

The high disparity in species densities (empirically estimated by the number of 

captures divided by effort of capture (the time between capturing one individual from a 

species until capturing a conspecific) may reflect the biogeographic origin of each 

species studied and their characteristic habitat. P. muralis, being a central-European 

element, would be more capable of occupying and thriving under high humidity and low 

insolation conditions typical of Atlantic/mountain climate, as observed, while P. liolepis 

predominates in Mediterranean climate regions and is very scarce in mountain areas 

(MAC, personal observation in the Cantabric region). Hence, in the Montseny massif P. 

liolepis was likely at its ecological limits (Llorente et al., 1995) because it occurred in 

areas with increased RH, decreased air and substrate temperature (Table 3). 



66 

 

In contrast, it is hypothesized that the confined presence of P. muralis to mountains in 

Iberian Peninsula may be due to interaction with other lacertid species ecologically 

similar rather than its phylogeographic origin. In fact, in other Mediterranean regions P. 

muralis is found in lowland areas as observed in the Balkan or Italian Peninsulas where 

it reaches the southernmost limits (Llorente et al., 1995; Gasc, 1997). 

The standard error of Tb was more than the double of Tp’s indicating that temperatures 

selected in the field vary more than in controlled conditions (Table 5). Nonetheless, the 

low sample sizes should not be disregarded. The lower precision of thermoregulation 

and the lower Tb may be a consequence of restrictions imposed by the thermal 

environment (Huey, 1982; Sears & Angilletta Jr., 2003) but also may be due to shifts in 

the thermal setpoints as a temporary response to unsuitable conditions. 

The negative difference between Tb and Tp reveals that lizards in the field were active 

at suboptimal body temperatures otherwise they would only be found active in places 

and times with suitable conditions (Grbac & Bauwens, 2001). However, during this field 

work, we captured active animals at low Tair and Ts and with dense cloud cover, 

conditions less suitable for thermoregulating lizards. 

P. muralis is an active thermoregulator because it is able to reach a Tb different from 

external conditions (Table 1). This is shown through the low slope of the regression 

equations of Tair:Tb for P. muralis (Hertz et al., 1993). The Ts also looks relevant for 

maintaining a suitable Tb indicating that P. muralis termorregulates not only through 

irradiative heat but also by conduction with the substrate. In fact, this thermoregulatory 

ability is underestimated because the Tair and Ts were in fact results of a previous 

“selection” by the lizard (i.e. it was not active in other microhabitats and conditions). 

Similar conclusions could be taken for P. liolepis but the sample size requires caution 

in such assessments. 

Nonetheless, in order to properly assess if the lizards termorregulate precisely, i.e., 

reach a Tb within the range of Tp, at least when the environmental temperatures allow 

them, it is further necessary to use copper models to determine the operative 

temperatures (Te). Copper models mimic lizards features (size, shape, irradiative 

properties) and biophysical factors capable of affecting heat balance (Castilla et al., 

1999; Hertz et al., 1993). Determining Te will clarify if lizards are inhibited of reaching 

optimal Tbs by environmental conditions throughout the year in mountain areas and 

whether they can only reach higher Tbs in microhabitats which may constrain foraging 

or reproductive behaviours (Grbac & Bauwens, 2001). Also, comparing Te with Tb 

selected in the field allows understanding in what extent these species are able to 

termorregulate precisely.  
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Supplementary material 

 

Appendix 1. ANOVA for W0 and SVL (data log-transformed). 

 

ANOVA for W0 

 df F p 

Species 1,47 15.27 0.0003 * 

Sex 1,47 12.70 0.0009 * 

Species*Sex 1,47 2.40 0.13 

ANOVA for SVL  

 df F P 

Species 1,47 0.33 0.57 

Sex 1,47 0.27 0.61 

Species*Sex 1,47 0.12 0.73 
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Abstract: 

 

Environmental factors constrain the distribution of species and interactions among 

them. Determining the most influencing factors is important to understand their range 

limitations. Here, environmental niche-based models (ENMs) are produced using 

Maxent software in order to determine the current suitable areas of two locally 

sympatric species in north-eastern Iberia: P. muralis and P. liolepis. The relevance of 

the climatic variables used is assessed and ENMs for future climate change scenarios 

are produced. 

The most contributing variables for the models are water-related (precipitation of 

wettest month and precipitation seasonality). Models predicted an extensive area of 

similarly suitable conditions for both species in the north of the study area. 

The models for the future climate conditions reveal that P. muralis is simply expected to 

retract from the peripheral areas in the south and east while P. liolepis will became the 

only species in such places and will progress high up in the Pyrenees. In the harshest 

scenario (A2a; warmer and drier), P. liolepis will disappear from central west due to 

aridification. P. muralis range will decrease but will be little fragmented while P. liolepis 

range will shift northwards and, hence, depend on dispersal. Therefore, P. liolepis 

could have the worst part of climate change effects. 

A higher resolution of bioclimatic variables and presence records are needed in order 

to unravel the type of interaction occurring in the predicted sympatry areas. 

 

Keywords: Environmental Niche-based models, bioclimatic variables, Podarcis, 

sympatry, future scenarios 
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Introduction 

 

The geographic distribution of species is constrained by their ecology and evolutionary 

history which work at different scales and intensity (Soberón & Peterson, 2005). Abiotic 

and biotic factors, dispersal conditions and evolutionary capacity to adapt are factors 

that constrain and shape species’ distribution.   

Ectotherms are directly dependent on the external ecological conditions to keep their 

physiological processes (Huey 1976; Angilletta et al. 2002). Among the abiotic factors, 

temperature is known to impose severe constraints for thermorregulating lizards (Huey 

& Slatkin, 1976). However, being important, temperature may not be the most 

constraining abiotic factor for many species. This is the case of some lacertid lizards 

which have been recently demonstrated to depend more on humidity (García-Muñoz & 

Carretero, submitted; Osojnik et al. submitted.; Carneiro et al. unpub). Abiotic factors 

are likely to change in the future due to environmental climatic changes eventually 

leading to a decrease or increase of suitable environmental conditions either by 

causing habitat fragmentation or expanding suitable conditions, respectively (Gaston, 

2009). 

The suitability of habitat can be assessed by Ecological Niche-based Models (ENM) 

which estimate the ecological niche under a spatial perspective. By estimating the 

habitat suitability of different species, ENMs may give further insights on interspecific 

interactions and on the environmental characteristics limiting and shaping species 

distributions. ENMs relate presence records of species with ecological or geographical 

characteristics of the study sites (Elith, Burgman, & Regan, 2002).  

In the Iberian Peninsula, species of the Podarcis  genus are mainly found in parapatry 

while fewer are found in sympatry (Carretero 2008). P. muralis and P. liolepis partly 

overlap in North-eastern Iberian Peninsula at geographic scale while they are locally 

sympatric (syntopic) only in a few localities (Llorente et al. 1995). Their ecology and 

morphology are fairly similar but they have different biogeographic origins (Oliverio, 

Bologna, & Mariottini, 2000; Kaliontzopoulou et al., 2011) and geographic ranges 

(Gasc et al., 1997). P. muralis is the member of the genus with the broadest distribution 

range as it is widely spread from North Iberia to Western Turkey and from Southern 

Italy and Balkans to Central Europe (Gasc et al., 1997). In the Iberian Peninsula, it is 

restricted to the north and mountain regions with low temperatures and medium/high 

humidity levels, contrasting with the continuous pattern also extended to the 

Mediterranean areas observed in the Italian peninsula and the Balkans (Pleguezuelos 

et al. 2002; Loureiro et al. 2010). More specifically, the Iberian range is quite 
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continuous in the north from Pyrenees to the Cantabric region, but  it splits in isolated 

nuclei in the centre, namely in the east Central System above 1230m (in the Massif of 

Guadarrama) and in North Iberic System from 1000m to 2200m of altitude in Urbión, 

Cebollera and Moncayo Mountains as well as the southern isolates in the South Iberian 

System of Sierra de Gúdar, and Penyagolosa (Diego-Rasilla, 2009). In Catalonia, 

north-eastern Iberia, P. muralis occupies 26.8% of the total area and is mostly 

distributed from 30m asl to 2300m asl. This is the most abundant lizard species in the 

areas with no Mediterranean climate and the western limit of distribution is drawn by 

the 800mm of annual rainfall and it is usually not found in places with medium annual 

temperature above 11ºC (Llorente et al. 1995). In contrast, P. liolepis is widely and 

continuously distributed in the Mediterranean areas of NE Iberia, where it occupies 

76.8% of the Catalonia area, but it is restricted to the plains in SE France (Llorente et 

al. 1995; Renoult et al. 2010; Kaliontzopoulou et al. 2011). 

In this study we use ENMs aiming at determining i) the main environmental factors 

defining the presence of both P. muralis and P. liolepis and whether they differ between 

them; ii) the current predicted distribution for each species; iii) indirect evidence of 

interaction at geographic level between both species; and iv) the future putative areas 

of distribution, and eventual interaction, under different available scenarios of climate 

change.  

 

 

Material and Methods 

 

Study area and species datasets 

 

The partial distributions of P. muralis and P. liolepis were modelled in Catalonia, north-

eastern Spain (Fig. 1). This is a relatively large area that provides a good 

representation of different environments and where no other Podarcis species are 

present. A total of 439 historic records of Podarcis (321 P. liolepis and 118 P. muralis) 

in the study area were combined with bioclimatic variables to develop ENMs of habitat 

suitability for both species. Historical records were obtained from the Spanish Atlas 

updated until 2005 (Montori et al., 2005) represented on the WGS84 grid in a 

georeferenced database and displayed using ArcMap 9.3 GIS (ESRI, Redlands, 

California, USA). 
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Fig. 1. Location (A) and geography (B) of Catalonia; presence points of P. muralis (open circles) and P. liolepis 

(closed circles) (C). Areas occupied by both species are marked with both circles. 

 

 

The study area was divided in 10 x 10 km squares to match the resolution of the points 

of species which is an acceptable scale for ENMS (Llorente et al. 1995; Ribeiro et al. 

2009).  

 

 

Environmental data for current and future scenarios  

 

Climatic variables (CVs) with a resolution of 5 arc-minutes (~10 km spatial resolution) 

were obtained from the WorldClim data base in the datum WGS84 (Hijmans, Cameron, 

Parra, Jones, & Jarvis, 2005; http://www.worldclim.org/). Of the 19 CVs available, six 

with a Pearson correlation lower than 0.75 were selected (Table 1; Sillero, 2009).   

 

A 

B 

C 

   Pyrenees;        pre-Pyrenees;        Catalan depression;              

 Transversal range;       Pre-littoral mountain range;        
 Littoral mountain range;      Littoral and pre-littoral depressions. 
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Table 1. Climatic variables used on modelling the distribution of Podarcis liolepis and P. muralis in Catalonia, 

northeastern Spain. BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO7 = Temperature 

Annual Range. Source: Hijmans et al. 2005. 

 

Climatic variables (r<0.75 in all cases) 

Bio3 = Isothermality (Bio2/Bio7) (* 100) 

Bio4 = Temperature Seasonality (standard deviation *100) 

Bio8 = Mean Temperature of Wettest Quarter 

Bio9 = Mean Temperature of Driest Quarter 

Bio13 = Precipitation of Wettest Month 

Bio15 = Precipitation Seasonality (Coefficient of Variation) 

 

 

The two predictive models of each species for the current environment were 

intersected in order to determine the areas with equally suitable conditions for both 

species. 

For the future climate we used three coupled atmosphere-ocean models (CCCMA, 

HadCM3 and CSIRO) each with three emission scenarios (A1b, A2a and B2a) for three 

time periods (2020, 2050, 2080). The A1b scenario predicts rapid human population 

expansion and more environmental consciousness; the A2a predicts the highest 

human population expansion, changes in land-use, high increase in CO2 emissions 

along with high air temperatures; the B2a predicts low human population growth and 

slower land-use changes (IPCC, 2003). 

The mean models of the three coupled atmosphere-ocean models for each time period 

were joined. The operation was repeated for each emission scenario giving a total of 

18 projections (3 scenarios x 3 years x 2 species). 

 

 

Ecological Niche-based Models 

 

The ENMs for current conditions of the two species were generated using Maxent 

software version 3.3.3k available at http://www.cs.princeton.edu/~schapire/maxent/. 

This software calculates the realized niche of species (Sillero, 2010) by using the 

environmental data from the only-presence records and the background sample (finite 

number of points from the landscape to which values of CVs are associated) to 

estimate the ratio “probability density of covariates across locations within landscape 

where the species is present”/”probability density of covariates across landscape” (Elith 

et al., 2011). This is done by choosing the statistical model with the maximum entropy 
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(Phillips et al. 2004; Phillips et al. 2006; Phillips 2012). Pixels with no presence records 

are not treated as absences. Maxent makes a post-transformation of the raw output 

providing a logistic output that makes assumptions about prevalence and sampling 

effort to achieve a better estimate of the suitability of the environment for a species’ 

presence rather than the probability of occurrence (Phillips 2012). 

It has been shown that the predictions of Maxent coincide more with those of 

mechanistic models even if considering predictions for the future (Hijmans & Graham, 

2006).  

The final current models and the 18 projections were the average of 20 replicates 

which were run with random seed (a different random sample is used each time 

Maxent is run). A random test percentage of 30% was chosen so that the program sets 

aside 30% of the sample records for testing (33 P. muralis and 84 P. liolepis) and uses 

70% as training data set (78 P. muralis and 196 P. liolepis) on each run. The test data 

set is used to evaluate the performance of the model. Bootstrap was the sampling 

technique employed since it allows sampling with replacement. Models were run with 

auto-features  and recommended default values and options were used (Phillips et al. 

2006). The output was in logistic format which gives an estimate between 0 and 1 of 

suitability.  

Models were tested with the area under the curve (AUC) of the receiver operating 

characteristics (ROC) plot as it is a measure of individual model fit (Fielding & Bell, 

1997). A ROC plot is produced by relating the proportion of presences correctly 

predicted (sensitivity) with the proportion of pseudo-absences incorrectly predicted (1-

specificity). Higher values of AUC may translate the proportion between the total size of 

the distribution area of the species and the size of the study area: the larger the 

proportion the larger the value of AUC (Lobo, Jiménez-Valverde, & Real, 2008). 

The relevance of each variable to the Maxent prediction was determined by Jackknife 

analyses of the training and test gain and of AUC. In Jackknife analysis each CV is 

excluded in turn and a model is created with the remaining variables; then another 

model is created using each variable in isolation; and finally, a model is created using 

all variables. The value of the gain for each CV indicates if the variable contributes 

more in predicting the suitability than a uniform distribution (which would have zero 

gain). 

Response curves of each CV were performed to also assess its importance in 

predicting the suitability of habitat. The values of the 20 replicates of each CV were 

averaged and represented by a tendency curve adjusted by a polynomial equation of 

sixth degree. These curves give the probability of contribution of CV for the raw 
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prediction of the models which indicate the values of the CVs suitable for each species 

(following Martínez-Freiría et al. 2008).  

 

 

Results 

 

Models for both species were significantly better than random predictions and test and 

training data sets are not correlated (Table 2). Training AUC is higher for P. muralis 

while the value for P. liolepis is closer to 0.5 (Table 2).  

The CV more explaining the variation in the model of P. muralis is Precipitation of 

Wettest Month (Bio13) while Mean Temperature of Wettest Quarter (Bio8) contributes 

the least to the model (Table 2Table ). The CV that more contributes to fitting the model 

of P. liolepis is Precipitation Seasonality (Bio15) while Temperature Seasonality (Bio4) 

has less impact on the prediction (Table 2).  

 

 

Table 2. Percentage contribution of each climatic variable and mean training and test AUC for the 20 Maxent 

models of P. liolepis and P. muralis in Catalonia, Spain. Minimum and maximum values within brackets. See 

abbreviations in Table 1. 

 

 

 P. muralis P. liolepis 

Training AUC 0.85    (0.84 – 0.88) 0.69     (0.65 – 0.72) 

Test AUC 0.82    (0.78 – 0.87) 0.57     (0.52 – 0.67) 

Test gain 0.80    (0.64 – 1.02) 0.01     (0.009 – 0.18) 

Bio3 2.80    (0.00 – 11.26) 13.56    (2.44 – 28.05) 

Bio4 2.90    (1.21 – 7.58) 11.13    (4.22 – 28.26) 

Bio8 2.00    (0.22 – 6.15) 12.17    (1.22 – 27.35) 

Bio9 8.60    (0.28 – 22.38) 14.15    (2.61 – 26.80) 

Bio13 76.9    (65.39 – 85.79) 13.41    (2.15 – 31.16) 

Bio15 6.90    (0.95 – 25.00) 35.57    (17.40 – 62.65) 

 

 

The results of Jackknife analyses corroborate these findings (Fig. ). The CVs Bio13 and 

Bio15 alone contribute most for the prediction of distribution of P. muralis while 

Isothermality (Bio3) is the less contributing variable (Fig2). Excluding Bio13 will 

decrease the training and test gain (Fig. 2A and 2B). Excluding Bio 4 will improve the 

predictive performance of the model (Fig. 2B). The results of the three Jackknife 

analyses are concordant. 
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Fig. 2. Jackknife of Regularized Training (A) and Test Gain (B) and of AUC (C) of P. muralis model distribution. 

 

 

The variable that contributes most individually on predicting the distribution of P. 

liolepis is Bio15 followed by Bio13 and Mean Temperature of Wettest Quarter (Bio8) 

(Fig. 3A and 3B). The model performs better if using only Bio15. If using only Mean 

Temperature of Driest Quarter (Bio9) to predict suitability for P. liolepis the model 

would perform worse than random prediction (Fig. 3B). When variables Bio8 and Bio9 

are not used, the predictive performance of the models improves (Fig. 3C).  

 Jackknife of regularized training gain for P. muralis 

A 

 

 Jackknife of regularized test gain for P. muralis 

B 

 

 Jackknife of AUC for P. muralis 

C 
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Fig. 3. Jackknife of Regularized Training (A) and Test Gain (B) and of AUC (C) of P. liolepis model distribution. 

 

 

Low isothermality (bio3) increases the probability of occurrence of both species while 

higher values are suitable only for P. liolepis (Fig. 4). P. muralis is more likely to occur 

in areas with middle values of temperature seasonality (bio4) while P. liolepis is likely to 

occur in areas with the entire range of seasonality values with a probability of 

occurrence of around 0.5. Regarding the mean temperature of the wettest quarter 

(bio8) prediction of the model for P. muralis is better for lower values and slowly 

 Jackknife of regularized training gain for P. liolepis 

A 

 

 Jackknife of regularized test gain for P. liolepis 

B 

 

 Jackknife of AUC for P. liolepis 

C 
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decreases towards the higher values while for P. liolepis it is lower for lower 

temperatures during the wettest quarter and is constant for higher temperatures. 

During the driest quarter (bio9), P. muralis is likely to be found in colder areas and its 

probability of occurrence rapidly decreases for medium to high temperatures. P. liolepis 

is equally likely to occur in the whole range of temperatures during the driest quarter.  

Low precipitation levels (bio13) are suitable for P. liolepis while higher values of 

humidity likely increase the suitability for the presence of P. muralis. However, medium 

values of humidity are somewhat similarly adequate for both species. Low values of 

precipitation seasonality (bio15) are similarly appropriate for both species but higher 

seasonality in only suitable for P. liolepis since the probability of occurrence of P. 

muralis for those values is very small (Fig. 4). 
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Fig. 4. Response curves of P. muralis (dotted line) and P. liolepis (full line) to the selected climatic variables. 
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Highly suitable current conditions for P. muralis are detected in the northern part of 

Iberian Peninsula following the Pyrenees line until near the upper eastern shore line 

(Fig. 5). The high suitability area also includes northern pre-Pyrenees and the 

Transversal mountain range (see Fig. 1 for the geography of Catalonia). To the south 

of this area decreasing suitability areas are predicted. In the south-eastern part of the 

Central Depression the lowest suitability values for P. muralis are found. 

The mean model of the predicted distribution of P. liolepis reveals mildly suitable 

conditions across the entire study area except for the north-western Pyrenees where it 

is fairly low. Also, few pixels of low habitat suitability occur in the eastern part of 

Catalonia in the area of the Littoral mountain range and the southernmost less suitable 

pixels are located in the pre-Littoral mountain range.  

Low to mildly suitability values are detected simultaneously for both P. muralis and P. 

liolepis in the areas of the Pyrenees, pre-Pyrenees, Transversal range and north-

eastern areas of the Littoral and pre-Littoral depressions (Fig. 5; Intersection). They 

closely follow the predicted distribution for P. muralis with few exceptions in the north-

western Pyrenean areas. Simultaneous high habitat suitability conditions for both 

species were not detected in the study area. From the pre-Pyrenean region southwards 

no common suitable conditions for both species are found. 

Predictive models for the three future climate scenarios reveal different trends of 

putative distributional ranges between the two species (Table 3) as expected from the 

current distribution. 

According to the A1b climatic scenario, suitable conditions for P. muralis are likely to 

decrease in the north-eastern coastal areas along the years. In addition, the A1b 

scenario predicts a range contraction towards the Pyrenees with suitable conditions no 

longer available in the pre-Pyrenees. In the Transversal mountain range, habitat 

suitability for P. muralis decreases along the years. The A2a scenario also predicts a 

severe range contraction from 2020 to 2050 in the pre-Pyrenees and north-eastern 

coastal areas whereas by 2050 and 2080 medium suitability conditions will appear in 

north-western Pyrenees. By 2080 the entire Central Depression becomes completely 

unsuitable for P. muralis. According to the B2a predictions for P. muralis, suitability 

conditions will remain rather constant and favourable for the species in the north of the 

study area although by 2080 they slightly decrease in the northern extreme (Table 3). 

The A1b scenario for P. liolepis predicts medium habitat suitability across Catalonia 

which will slightly decrease in the Catalan depression along the years. The areas with 

higher suitability values area located in some pixels in the pre-Pyrenees and the lowest 

values of suitable conditions are located in the north-western Pyrenees (Table 3). 
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P. muralis  

 

 

 

 

 

 

 

 

 

 

 

 

 

P. liolepis 

 

Intersection 

 

Fig. 5. Mean predicted distribution of P. liolepis and P. muralis in Catalonia based on current bioclimatic 

variables (see Table 1). The two maps of current predictions for each species were intersected (“Intersection” 

map). One pixel=10km
2
. Legend gives the suitability probabilities. 
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However, in the north-western extreme in the lower altitude areas in that region, 

medium suitable conditions will appear by 2080. The A2a predicts medium to high 

suitability conditions for P. liolepis in the north-western region along the years. To the 

south of the Pyrenees the suitability is low except for some pixels in the delta of the 

Ebro River. The B2a scenario for P. liolepis also predicts values of high habitat 

suitability in north-western Pyrenees by 2020 and 2050 although by 2080 those values 

decrease but progressively shift towards the south. In the remaining study area, 

medium habitat suitability is predicted except for some pixels in the western Catalan 

depression and in eastern Littoral depression with low values. 

Similar suitable conditions for both species were predicted in north-eastern Catalonia 

by the A2a scenario in 2020 and in north-western Pyrenees and Transversal range by 

the B2a scenario in 2020 and 2050. 

 

 

Discussion 

 

The ENMs of both P. muralis and P. liolepis revealed that their distribution patterns are 

mostly influenced by water-related CVs (Table 2). Such finding is somewhat 

unexpected since Podarcis lizards are thermorregulating species so in principle 

environmental temperature could be expected to have the most preponderant role in 

predicting their distribution. Similar patterns are reported for P. vaucheri in North Africa 

(Kaliontzopoulou et al., 2008). 

The distribution models of P. muralis and P. liolepis predict current suitable conditions 

in the areas where they are currently found (Llorente et al. 1995; Pleguezuelos et al. 

2002) supporting a good model performance under this working scale. In fact, the low 

value of AUC for P. liolepis may only reflect the low proportion between size of 

distribution and size of the study area (Lobo et al., 2008). 

P. muralis was predicted to occur in areas with low seasonal variation of temperature 

and humidity, high precipitation and low temperatures, that is, Eurosiberian/Atlantic 

climate. P. liolepis was predicted to occur in areas with high seasonal variation of 

humidity, low precipitation and high temperatures in addition to indifferent conditions of 

seasonal variation of temperature, that is, Mediterranean climate.  
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Table 3. Mean models (ccma, csiro and hadcm3 together) of each scenario (A1b, A2a, B2a) for each year. One pixel=10Km
2
. Legend gives the probabilities of habitat suitability. 

 

P. muralis P. liolepis 

 A1b 

2020 

 

 

 

 
2050 
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Table 3. Continued 

P. muralis P. liolepis 

 A1b  

2080 

 

 

 

 

 A2a 

2020 
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Table 3. Continued 

P. muralis P. liolepis 

A2a 

2050 

 

 

 

 

2080 
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Table 3.Continued 

P. muralis P. liolepis 

 B2a 

2020 

 

 

 

 2050 
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Table 3.Continued 

P. muralis P. liolepis 

 B2a 

 

 

 

 

 

2080 
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The bioclimatic requirements shown (Fig. 4) suggest that P. muralis is prone to thrive in 

mountain areas because of their lower air temperatures, more humid climate and low 

precipitation seasonality. This is in accordance with its presence in areas of Atlantic 

climate in the Iberian Peninsula since the predicted suitable areas for P. muralis 

overlap with the Atlantic climate in the north-east of the study area (Sillero et al., 2009). 

The same occurs for the other mountain areas in Iberian Peninsula where P. muralis is 

found (the Central and Iberian mountain ranges). The explanation for this repeated 

pattern could simply be the presence of suitable areas for P. muralis in high altitudes. 

However, in mountain ranges of the pre-Pyrenees with altitudes higher than that of 

Montseny or Central System, this species does not occur while P. liolepis is present. 

Conversely, P. muralis can be found in western Catalonia in areas with low altitude 

(300m) near the coast also with Atlantic climate (Sillero et al., 2009) corroborating the 

assumption that this type of climate is the one influencing the distribution pattern of P. 

muralis.  

Conversely, P. liolepis has more suitable areas in regions of Mediterranean climate 

characterized by higher temperatures but also high thermal and hydric seasonality (Fig. 

4). However, P. liolepis can be found in the Pyrenees but only on the south-facing 

slopes (Rica 1983; Pleguezuelos et al. 2002) while P. muralis is found on the north-

facing slopes. 

The smooth snake, Coronella austriaca, displays a similar pattern to that of P. muralis 

at a different geographic scale. It has a wide European distribution and in Iberian 

Peninsula it continuously inhabits the northern regions. However, isolated patches 

occur in the centre and south of the Peninsula (Santos et al., 2009). Its distribution is 

correlated with Atlantic areas and the isolated patches are probably due to decrease of 

habitat suitability that may have led to local extinctions. It is not unreasonable that the 

same has happened for P. muralis populations in the Central and Iberian mountain 

ranges: the occurrence of isolated nuclei in those areas is likely due to climatic 

fluctuations during the Pleistocene that lead to local extinctions (Santos et al., 2009). 

The progressively reduced areas of suitable habitat for P. muralis are likely due to 

temperature increase and precipitation reduction predicted by the models for future 

climate scenarios. 

The predicted overlap area of highly suitable conditions (Fig. 5; Intersection) does not 

necessarily imply that both species live in sympatry. In fact, field observations (Llorente 

et al. 1995) revealed that in most areas they are not in the same location which may 

indicate competitive exclusion: environmental conditions are suitable for both but only 

one is found in the area (Costa, Wolfe, Shepard, Caldwell, & Vitt, 2008). However, a 

better resolution of presence records and bioclimatic variables is needed to more 
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precisely determine putative sympatry areas and determine if species are competitively 

interacting rather than occupying different microclimates. Nonetheless, this somewhat 

coarse resolution does not fail in predicting the general patterns. 

Regarding the predictions of the A1b future climate scenario, the possible expansion of 

P. liolepis towards the north-east may be caused by an increased global air 

temperature. This may also explain the contraction of P. muralis away from coastal 

areas which are predicted to get warmer. In fact, the current models predict that P. 

liolepis founds suitable conditions in warmer and drier areas than P. muralis (Fig. 5). 

The A2a is the most rigorous scenario and predicts an overall range contraction for 

both species although new suitable areas in the north-west Pyrenean region are 

detected for P. muralis and for P. liolepis, which is currently an area of Atlantic climate. 

This pattern is likely to be related with the increase of air temperature as previously 

discussed. In addition, non-suitable conditions in coastal areas are possibly caused 

land-use changes and by the high expansion of human population since these areas 

are mostly covered by cities which are likely to expand.  

The B2a predictions are the least changing for both species along the years. This may 

be related with low land-use changes and higher environmental protection. In fact, 

natural parks located in the pre-Pyrenean areas (such as the Montseny Natural Park) 

may be favoured. 

In conclusion, P. muralis and P. liolepis have adequate environmental conditions to 

remain in mountain areas in the north-eastern part of Catalonia. P. muralis is likely to 

remain in the same areas where it is currently found although it may suffer a slight 

contraction in its range, disappearing from the most coastal mountain areas. P. liolepis 

may expand towards the northernmost limit of Catalonia where it is not currently found 

if the climate temperature rises to considerable values.  
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3 General discussion 

 

The results obtained following three independent methodological approaches 

(laboratory tests, field records and ecological modelling) corroborate each other 

revealing that environmental humidity rather than temperature is the factor most 

constraining the distribution patterns of P. liolepis and P. muralis. However, some of 

the conclusions, particularly in the field, are based on a low sample size, namely in 

terms of number of P. liolepis individuals in the sympatry area (Carneiro, García-

Muñoz, & Carretero, unpub). 

Thermal ecology has been the main focus on reptile ecophysiological studies (Huey, 

1976). Nonetheless, some studies focus on the physiology of some taxa regarding skin 

permeability, scales or other mechanisms by which water can be lost (Lillywhite, 2006; 

Calsbeek et al., 2006). However, the importance of humidity is still left aside in most 

studies on reptile physiology. Obviously, water is of paramount importance for all living 

organisms. At global level, reptiles are mostly associated either to tropical areas 

characterized by high, stable temperatures and humidity levels, or to desert areas, 

where high air temperatures and low environmental humidity are the main constraints 

for their activity. However, in temperate areas the relative influence of these two factors 

is more dubious and must be adequately addressed (Schmidt-Nielsen, 1997a). 

In the Iberian Peninsula, located in temperate-climate latitude, two main climatic areas 

are found: Atlantic and Mediterranean. While the Atlantic climate ranges from the 

western and northern coastal areas along the north-eastern areas of the peninsula, the 

Mediterranean climate predominates in the remaining area with few exceptions on the 

higher mountain ranges (Sillero et al., 2009). Both regions differ mainly in (summer) 

precipitation regimes while temperature is more variable according to the altitude and 

degree of continentality, although it is somewhat lower in the Atlantic climate. 

Climate models for future climate change scenarios reveal that the Mediterranean 

climate will expand northwards (IPCC, 2007). The ENM predicting more severe 

changes in environmental conditions, the A2a, (Carneiro & Carretero, unpub) forecasts 
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that highly suitable areas for P. liolepis will appear near the Pyrenees, the highest 

mountain range in the peninsula, which is concordant with its preference for hotter and 

drier conditions according to the model’s predictions. 

Also, the ENMs predicted areas with highly suitable conditions available for both 

species. The most relevant variables detected by the models are mainly related to 

hydric ecology. In parallel with this information provided by the models, preferred 

temperatures of P. liolepis and P. muralis are not statistically different suggesting 

similar thermal requisites. This is quite concordant with the ENMs which do not 

attribute high relevance to the temperature-related variables for explaining the 

presence of both species at geographical scale.  

Both species are usually rock-dwelling but P. muralis is displaced to the ground when 

in sympatry with P. liolepis (Diego-Rasilla, 2009). However, such displacement may not 

occur if both species are not syntopic but segregate at geographic level (Carneiro, et 

al, unpub). The upwards shift of Tp of P. liolepis due to the presence of P. muralis in 

the interaction tests may not constitute a disadvantage for the former if climate in 

sympatry areas warms, providing sufficient thermal resources. This contrasts with the 

stability of thermal selection by P. muralis either in the presence of conspecifics or 

heterospecifics. Certainly, P. muralis may face some thermal constrains if climate is 

warming but likely heterogeneous habitats will still provide adequate thermal 

environments. However, the subsequent aridification may be more problematic 

because lizards would have problems in dealing with abrupt humidity variations. These 

will be especially constraining for P. liolepis occurring in the driest areas but also for P. 

muralis currently inhabiting peripheral areas of the range. While the first will simply 

derive from the suitability of abiotic conditions for the physiology of P. liolepis, the 

second may result from a combination of the climate suitability from both species and 

their (asymmetric) interactions. According to our lab tests, we may expect that P. 

liolepis would outperform P. muralis in syntopy in terms of thermal/hydric environment if 

climate gets warmer and drier as future scenarios forecast.  

Further environmental data is necessary to complete the view of possible sympatry and 

the inter-specific impacts on the physiology of P. liolepis and P. muralis. Detailed data 

on temperature of air and substrate, relative humidity along with wind speed, direction 

of solar rays and insolation should be determined in order to fully comprehend the 

ecological requisites of these species. Temperature and humidity data loggers would 

allow more reliable information on the operative temperatures and water loss rates of 

lizards (Hertz et al., 1993; Castilla et al., 1999). This methodology should be applied in 

the termogradient and in the water loss experiments, in mesocosms (semi-natural 
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conditions where presence and abundance of heterospecifics can be manipulated) and 

in situ, in putative sympatry areas (Scheers and Van Damme, 2002).  

Additional experimental methodology integrating simultaneously thermal and hydric 

gradients should be developed. Some attempts have been made (Appendix 1) but 

proved unfruitful due to physical constraints (water evaporation increase leads to an 

increase of temperature impeding constant gradients of both factors). In addition, the 

same ecophysiological characters determined with these studies should be assessed 

for the other Podarcis species (García-Muñoz et al., 2011; Carretero et al., 2012) in 

order to obtain further insight on the influence of phylogenetic relations on the 

physiology of species within this genus. 

Information on other species (Bauwens et al., 1995; Castilla et al., 1999; Grbac and 

Bauwens, 2001; Carretero et al., 2006; Veríssimo and Carretero, 2008) would also give 

further insights on the ecophysiology and patterns of distribution of P. liolepis and P. 

muralis. The ecological requirements of both putative prey and predator species should 

be studied namely by interaction field experiments in order to unravel their 

preponderance on the distribution of these Podarcis species. In addition, conditions for 

egg incubation and hatchlings should be assessed since a species may be absent 

because of unsuitable conditions during incubation and hatching even if conditions for 

the adults are suitable (Van Damme, Bauwens, Braña, & Verheyen, 1992; Ji & Braña, 

1999). 

Assessing ecophysiological information and producing ENMs with correlative 

distribution modelling tools proved to be useful to understand the ecological 

requirements of P. liolepis and P. muralis. In the future, directly integrating such 

information to produce models of distribution would increase their reliability. This can 

be achieved with mechanistic models which are based on functional traits and 

physiological constraints (Hijmans and Graham, 2006) thus being completely 

independent of species records (Kearney et al., 2010, 2009). These models are able to 

determine the fundamental niche (Kearney and Porter, 2004; Kearney et al., 2009) by 

explicitly integrating limiting factors of species distributions and abundances (Kearney 

et al., 2009; Fei et al., 2012) such as preferred body temperature (Carneiro et al., 

unpub), lethal temperature (Monahan, 2009), core temperature, evaporative heat 

exchange in ectotherms, metabolic heat in endotherms or energy transport processes 

in plants (Kearney et al., 2009). 

Since mechanistic models use information intrinsic to each species and base 

predictions on real cause–effect relationships they allow assessing possible 

distributions independently of the current range (Kearney and Porter, 2004). 

Mechanistic models provide better and more correct prediction for instance in range-
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shifting species in comparison with correlative models (Kearney et al., 2009). Also, 

these models lead to a more reliable prediction of the impacts of climate change 

(Kearney et al., 2010) and of species’ future distribution because they are dynamic, 

stochastic and based on non-equilibrium which makes more sense in ecological terms 

(Pickett et al., 1994). The mechanistic approach does not directly account for 

interspecific interactions or for evolutionary affects (Soberón and Peterson, 2005) and 

they can only model the part that exists in the environment (Sillero, 2011). Regardless 

of the numerous advantages that mechanistic models offer, they are, in practical terms, 

difficult to implement because assessing physiological data for several parameters 

through field and/or laboratory experiments raises logistic problems.  

In conclusion, data used to produce correlative models are easier to obtain and apply 

because environmental variables such as bioclimatic, topographic, habitat-related and 

biological are easily measured in the field and they are fairly good correlated with 

species patterns observed, while determining physiological aspects of species’ biology 

may require specialized and expensive material. The outputs of the models are easier 

to compare with most studies on changing environments (Guisan and Zimmermann, 

2000), are valuable to present-day scenarios and can be used to obtain a first 

assessment over large areas. Nonetheless, physiological data should also be 

integrated to improve parameterization in correlative models for the future since these 

two approaches are complementary. 
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4 General conclusions 

 

 Studies as this bring new insights on the impacts of humidity on physiology and 

distribution of Lacertid species and highlights that this abiotic factor should be more 

stressed in future studies on reptilian species. 

 Convergence of thermal physiology seems to occur among two Podarcis species 

non-directly related as they select similar preferred body temperatures. 

 Water ecophysiology varied interspecifically among Podarcis species throughout 

time in one normal activity day although the final amount of water lost was similar. 

 Asymmetric interaction between species regarding body temperature attained 

when two heterospecific individuals were together caused an increase in the 

temperature preference of P. liolepis while P. muralis remained invariant. When two 

conspecifics were together no differences in preferred temperature were detected for 

either species. 

 Preliminary field sampling indicated that body temperatures in the field are more 

affected by air temperature although soil temperature and humidity also affect body 

temperatures. More field effort is needed to discriminate eventual differences between 

both species. 

 Environmental niche-based models indicate that variables related with water 

availability are more important than those related with temperature for predicting the 

presence of both species. 

 Models differ between both species but are inclusive regarding their competitive 

interaction due to limitations of data scale and fitting of modelling methods. 

 Projection of the models for the climate change scenarios predicts a contraction of 

the range of the species occupying the Atlantic climate (P. muralis) with increasing 

temperature and decreasing relative humidity; a geographic shift involving occupation 

of current peripheral Atlantic zones and disappearing from the most arid Mediterranean 

areas is observed for species with higher Mediterranean affinities (P. liolepis). 
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Glossary 

 

Basking - behaviour that consists in orienting the body perpendicularly to the solar 

rays direction and spreading the legs and flattening the body (Scheers and Van 

Damme, 2002; Schmidt-Nielsen, 1997b). 

 

Parietal eye - photoreceptive structure located on the top of the head; it responds to 

the presence of light and to different light wavelengths. Shielding the parietal eye with 

filters to different wavelengths causes a decrease in the upper and lower set point 

temperatures in 1-2ºC (Tosini and R. Avery, 1996). It is possible that this 

photoreceptive structure is responsible for detecting the beginning and the end of the 

daily photophase but it is not the only involved in the regulation of thermoregulatory 

processes (no effects on mean heating rates, and bask and forage durations were 

detected; Tosini & Avery (1996)). 

The effects of the parietal eye on thermoregulation are probably mediated by the 

hormone melatonin (Rismiller and Heldmaier, 1987). This hormone secreted from the 

pineal and the parietal eye affects the thermoregulatory processes because its 

secretion is inhibited by light (Rismiller and Heldmaier, 1982). 

 

Q10 - rate of a physiological process at one temperature divided by the rate of that 

process at a temperature lower by 10ºC. This parameter is used to describe the 

sensitivity of an organism to a change in Tb (Macnab, 2002). 
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Appendix 1 
 

An attempt for a simultaneous gradient of temperature and humidity 

 

After determining the thermal and hydric requirements separately for each species, we 

considered interesting to determine the exact thermal and hydric requirements of 

species at a given time. We tried to develop a methodology that would simultaneously 

combine thermal gradients and variable hydric regimes. To do so, the thermal gradient 

would have to be maintained under different hydric regimes. 

To conduct this trial we collected P. bocagei individuals from Moledo, northern Portugal 

(41º51’N 8º51’E; 6m altitude) in October 2011, in a transitional habitat between beach 

and abandoned agriculture fields. 

This trial was conducted by placing five terraria with different relative humidity side by 

side on a laboratory with constant air temperature (±26ºC). Each had a fine plastic net 

on the bottom as the substrate with which the animal would be in direct contact with.  

Two of the terraria had highly humid conditions created by a towel saturated with 0.4L 

of water (“Humid”); two had 450g of silica gel creating dry conditions (“Dry”), and the 

“Control” terrarium only had the net on the bottom and had the same temperature and 

humidity conditions as the laboratory.  

In each terrarium, a thermal gradient was created by placing an infra-red bulb of 150V, 

15 cm above the substrate as in the standard experiment (see Manuscript I). Each 

hour, for six consecutive hours (simulating the morning part of the lizard activity), a 

Fluke®-971 Hygrometer was used to register the temperature and relative humidity 

inside the terrarium by placing it in the middle.  

The first day of experiments was conducted with no lizards and, in the subsequent five, 

one individual was placed in each terrarium.  

The results obtained revealed several difficulties with the methodology. The main 

problem was the inability of maintaining humidity conditions constant (Figure 1). It was 

observed that in the “Dry” terraria the silica gel was saturated after three hours in the 

first day (“Control” had 30.5% and “Dry” had 26.4%) and after the third hour the 

“Control” and the “Dry” revealed the same trend. This was also observed in the 

subsequent days.  This probably translates shifts in the humidity of the room caused by 

the presence of the other terraria, in particular the “Humid”, since water was 

continuously evaporating from them. 
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Figure 1. Variation of humidity (A) and temperature (B) conditions inside each terrarium during one-day 

experiment (6 hours). “Control” – terrarium with the same conditions of temperature and humidity as the 

laboratory it was in; “Dry” - terraria with silica gel; “Humid” – terraria with water-saturated towel. 

 

 

In fact, RH ranged from 61.6 to 51.8%, decreasing throughout time. At a given point in 

time, each terrarium no longer had the initial conditions (Figure 1 A). 

The temperature in the same place of the terraria was not constant (Figure 1 B) (varied 

between 27.1 and 38.1ºC) probably due to interaction with physical properties of water. 

Another bias potentially introduced by this the design is the inability of weighing the 

excrements of the animals leading to a loss of statistical power since the weigh is 

always taken with high accuracy (0.0001g). 
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Also, the results of each day were not consistent with each other (not displayed) so this 

methodology was not replicable. This proved to be a non-viable methodology and 

alternative procedures should be implemented in future assessments of Tp and Wl 

simultaneous. 
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