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Organisms generally have many defenses against predation, yet may lack effective defenses if from populations without predators.

Evolutionary theory predicts that “costly” antipredator behaviors will be selected against when predation risk diminishes. We

examined antipredator behaviors in Aegean wall lizards, Podarcis erhardii, across an archipelago of land-bridge islands that vary

in predator diversity and period of isolation. We examined two defenses, flight initiation distance and tail autotomy. Flight initiation

distance generally decreased with declining predator diversity. All predator types had distinctive effects on flight initiation distance

with mammals and birds having the largest estimated effects. Rates of autotomy observed in the field were highest on predator-

free islands, yet laboratory-induced autotomy increased linearly with overall predator diversity. Against expectation from previous

work, tail autotomy was not explained solely by the presence of vipers. Analyses of populations directly isolated from rich predator

communities revealed that flight initiation distance decreased with increased duration of isolation in addition to the effects of

current predator diversity, whereas tail autotomy could be explained simply by current predator diversity. Although selection

against costly defenses should depend on time with reduced threats, different defenses may diminish along different trajectories

even within the same predator–prey system.
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Predation selects on the behavior and physiology of prey species

(Edmunds 1974; Blumstein and Daniel 2005; Blumstein 2006;

Losos et al. 2006; Shepard 2007), and potential prey use many

antipredator behaviors to reduce the possibility of becoming ac-

tual prey (Bulova 1994). While being eaten has obvious costs,

antipredator defenses also have costs (Ydenberg and Dill 1986;

Salvador et al. 1995; Pérez-Cembranos et al. 2013), which vary

with environmental pressures and type of defense. All else be-

ing equal, the persistence of antipredator behaviors should only

occur if the benefits outweigh the costs incurred, and costly be-

haviors should be eliminated by selection if they serve no benefit

(Magurran 1999; Blumstein 2002; Blumstein and Daniel 2005;

Pafilis et al. 2009a). Therefore, the degree of expression of

antipredator behavior seems to be related to the prevailing preda-

tion environment (Darwin 1839; Reynolds and Bruno 2013).

Islands generally host fewer predators than the mainland,

and prey species may show little in the way of behavioral or

physiological defenses (Darwin 1839; MacArthur and Wilson

1967; Pérez-Mellado et al. 1997; Blumstein and Daniel 2005;

Cooper and Pérez-Mellado 2012). This phenomenon, termed is-

land tameness, likely occurs where costly antipredator behav-

iors and physiological adaptations have been selected against in
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reduced predation environments (Blumstein and Daniel 2005),

for instance in Galápagos marine iguanas (Amblyrhynchus crista-

tus) (Berger et al. 2007), and tammar wallabies (Macropus eu-

genii) on Australian islands (Blumstein and Daniel 2005). As

such, naı̈ve island species, perhaps most infamously the dodo

(Raphus cucullatus), have been disproportionally affected by the

introduction of novel predators into previously predator-free en-

vironments (Beauchamp 2003; Baillie et al. 2004; Blackburn

et al. 2004; Losos et al. 2006; Bonnaud et al. 2010).

When approached by a potential predator, animals com-

monly flee to a refuge (Greene 1988; Cooper 1997; Blumstein

and Daniel 2005; Cromie and Chapple 2013). Because fleeing

is energetically costly (Ydenberg and Dill 1986; Martı́n and

López 2003; Pérez-Cembranos et al. 2013), and may decrease

opportunities for fitness-enhancing activities such as foraging

and mating (Ydenberg and Dill 1986; Cooper and Frederick

2007), animals balance the costs of fleeing against the costs of

remaining in place (Magurran 1990; Stankowich and Blumstein

2005). The flight initiation distance (FID) (distance between

predator and prey the moment before the prey flees) of prey is

a quantifiable measure of perceived predation risk (Bonenfant

and Kramer 1996; Blumstein and Daniel 2005; Amo et al. 2006;

Cooper 2011), and is predicted to reflect the prevailing predation

regime for prey populations (Cooper and Pérez-Mellado 2012).

Tail autotomy, or the self-severing of the tail, is a common an-

tipredator defense among lacertid lizards (Arnold 1984; Bateman

and Fleming 2009; Pafilis et al. 2009a). Autotomy in lacertids

occurs along specialized breakage planes located within verte-

brae throughout the tail (Chapple and Swain 2002a; Lin and Ji

2005). The shed tail writhes about for a period of time, a process

thought to distract the predator from the escaping lizard (Dial and

Fitzpatrick 1983; Arnold 1984, 1988). Although tail shedding

is a highly effective escape strategy (Dial and Fitzpatrick 1984;

Daniels 1985), it is also a very costly defense that is usually only

deployed after frontline defenses such as hiding or fleeing have

failed (Arnold 1984; Cromie and Chapple 2013). In many species

the tail contains a significant portion of fat deposits, and losing

those stores is energetically expensive (Ballinger and Tinkle 1979;

Bateman and Fleming 2009; Pafilis et al. 2009a). Regeneration of

the tail, which occurs at various rates among species, also requires

a considerable amount of energy (Vitt and Cooper 1986; Pafilis

et al. 2009a; Tsasi et al. 2009). Costs related to tail loss in various

lizard species include impaired locomotive capabilities, making

quick and efficient escape difficult (Chapple and Swain 2002b;

Lin and Ji 2005). Lowered social status (Fox and Rostker 1982;

Schall et al. 1989; Salvador et al. 1995) and decreased repro-

ductive output are additional transient, negative effects incurred

by recently autotomized individuals (Ballinger and Tinkle 1979;

Vitt and Cooper 1986; Pafilis et al. 2009a; Cromie and Chap-

ple 2013). Because autotomy can occur accidentally and without

survival benefit during intraspecific interactions (Vitt et al. 1977,

Jennings and Thompson 1999; Pafilis et al. 2008; Vervust et al.

2009), ease of autotomy in a population should reflect associated

costs and benefits.

Although predators demonstratively exert selective pressures

on behavior (Edmunds 1974; Blumstein and Daniel 2005; Losos

et al 2006; Shepard 2007), the mechanistic factors underlying is-

land tameness and the rate at which it occurs are unclear. Previous

behavioral studies on islands have largely focused on compar-

ing island behavior to mainland behavior (Blumstein and Daniel

2005), often across many species (Beauchamp 2004; Cooper et al.

2014), with vague predation variables (e.g., low, medium, high).

We aim to provide unprecedented resolution in the study of island

tameness by comparing many populations of one species in a sys-

tem where predator presence and history of isolation are known

in detail.

The present study focuses on the evolution of antipreda-

tor behaviors in distinct populations of the Aegean wall lizard

(Podarcis erhardii), a habitat generalist that is found in southeast

Europe and islands in the Aegean Sea (Greece) (Hurston et al.

2009). This species is known to be a poor overwater disperser

(Foufopoulos and Ives 1999) and because lizards on Cyclades

islands have been isolated with varying subsets of the original

pre-Pleistocene predation regime, they provide an excellent op-

portunity to study evolutionary mechanisms responsible for the

retention of antipredator behaviors. We focus on two defenses:

FID and tail autotomy, which are considered here together in

a combined frame to enhance our understanding of antipreda-

tor behavior evolution. Further, we develop a novel approach to

assess the rate of island tameness by combining geomorpholog-

ical seafloor and historic sea-level data to identify island ages

and assess the relationship between duration of isolation from

predators and behavior. Based on the ecological knowledge of

the Aegean Sea region and previously documented patterns of

behavior (Pafilis et al. 2009a,b; Li et al. 2014), we predicted that

(1) flight behavior would vary across the Cyclades Archipelago

with current predator diversity, (2) ability for autotomy would

be mostly influenced by the presence of vipers (see Pafilis et al.

2009a), and (3) FID and tail autotomy rates would decrease with

longer isolation in reduced predation environments.

Methods
STUDY SYSTEM

The Cyclades are a group of land-bridge islands located in the

central Aegean Sea (Fig. 1), which were formed when rising

sea levels since the last glacial maximum flooded parts of a large

Pleistocene island mass termed “Cycladia” (Foufopoulos and Ives

1999; Broodbank 2002; Poulos et al. 2009). The current climate

is typical of the Mediterranean region with warm, dry summers
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Figure 1. Map of Greece and Cycladic island sites in the Aegean. Agios Nikolaos (NI), Agia Paraskevi (PA), Agriloussa (AG), Amorgos

(AM), Anafi (AF), Andreas (AD), Andros (AN), Aspronissi (AS), Chtenia CH), Daskalio (DA), Dhonoussa (DH), Fidussa (FI), Gaiduronissi

(GA), Glaronissi (GL), Gramvoussa (GR), Ios (IO), Irakleia (IR), Kato Fira (KF), Kato Kufonissi (KK), Keros (KE), Kisiri (KI), Lazaros (LA),

Loumboudiaris (LO), Makronissi (MA), Mando (MN), Megali Plaka (MP), Mikri Vigla (MV), Naxos (NA), Nikouria (NI), Ovriokastro (OV),

Pano Fira (PF), Pano Kufonissi (PK), Parnitha∗ (PA), Parthenos (PR), Petalidi (PE), Schoinoussa (SC), Strongyllo (ST), Venetiko (VE). An

asterisk signifies the mainland location.

and cool, rainy winters. The islands experience more temperate

conditions than the mainland due to their proximity to the sea

and the very strong winds that prevail much of the year (Valakos

et al. 2008). Vegetation cover has been shaped by anthropogenic

disturbance over thousands of years (Rackham and Grove 2001).

It consists of a patchwork of agricultural areas, sclerophyllous

evergreen maquis, and a diverse, summer-deciduous dwarf scrub

community termed “phrygana” (Fielding and Turland 2008).

The Aegean wall lizard (P. erhardii) is a small, ground-

dwelling lacertid, with an adult snout-vent length of 49–78 mm,
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and a tail twice as long as the body (Gruber 1987). This species

is endemic to the southern Balkans and many Aegean islands,

and occurs in a variety of habitats. It preferentially inhabits areas

with dry stone walls and spiny vegetation, which serve as refugia

from terrestrial and aerial predators. This species eats mainly

arthropods (Arnold 1987), especially Coleoptera (Adamopoulou

et al. 1999), but has been observed foraging opportunistically on

fruits and plant matter (Brock et al. 2014). A once continuous

P. erhardii distribution across Cycladia was fragmented and

isolated by rising sea levels into >60 small island populations

experiencing different subsets of the pre-Pleistocene predation

regime (Foufopoulos and Ives 1999; Hurston et al. 2009; Poulos

et al. 2009).

QUANTIFICATION OF ISLAND CHARACTERISTICS

We measured the relative abundance of lizards on all island study

sites and one mainland location (N = 38). On Aegean islands

with no predators, population densities of lizards are high, which

could intensify intraspecific competition, potentially having an

effect on the maintenance of the ability to autotomy (Pafilis et al.

2009a,b). Lizard densities were determined by walking one or

two transects (100 m length and 4 m width) of suitable habitat

(most islands were too small for multiple transects, see Jaeger

1994; Pafilis et al. 2013) and recording any P. erhardii detected

within this area. All transects were conducted during the months

of May–early June under favorable weather conditions (sunny,

nearly windless 22–26°C) and during the peak activity hours of

the species (0900–1100 and 1500–1700).

Due to the restricted time window we had for each is-

land, we assessed the predator community on 37 islands and one

mainland location by combining published information (Valakos

et al. 2008; Pafilis et al. 2009a, and references within) with field

surveys conducted over the course of several visits. Surveys of

uninhabited islets consisted of walking an entire island search-

ing for signs of known, regional predators (e.g., skins, fecal ma-

terial, burrows, or live individuals). Our predator species were

elusive in several different ways (nocturnal, semifossorial, and

aerial hunters), and thus it was not possible to obtain predator

population densities during our visits to the scattered, often unin-

habited islands. We therefore use an index of predation pressure

applied in other behavioral studies of similar taxa (Pérez-Mellado

et al. 1997; Cooper et al. 2004; Pafilis et al. 2009a) wherein

predator categories are determined by life-history, taxonomic af-

filiation, and hunting strategy. We calculated this index by not-

ing the presence or absence of predator types and summing all

present categories for a measure of “Total Predation.” We divided

predators on the islands into six categories: (1) rats (Rattus rat-

tus), (2) sand boas (Eryx jaculus), (3) birds (Falco tinnunculus

and Buteo buteo), (4) Colubrid snakes (Dolichophis caspius,

Elaphe quatuorlineata muenteri, Natrix natrix persa, referred to

as “other snakes”), (5) mammals (feral cats [Felis catus], stone

martens [Martes foina]), and (6) vipers (Vipera ammodytes). The

three different categories of snake predators differ markedly in

hunting strategy. Vipers are sit-and-wait predators that ambush

and envenomate their prey (Nowak et al. 2008, Pafilis et al. 2009a),

whereas Colubrid snakes hunt down their prey following active

searching. The sand boa, E. jaculus, preys sometimes on adult

lizards though more often engages in fossorial lizard egg predation

(J. Foufopoulos, pers. obs.; Cattaneo 2010). We also distinguish

rats from the “mammals” category because rats in the Cyclades

are small-bodied opportunistic predators that lack the capacity of

cats and stone martens to prey efficiently on lizards. Cats (F. catus)

and rats (R. rattus) were introduced to the Greek islands thousands

of years ago (Klippel and Snyder 1991; Serpell 2000). Because

both species are now well-established parts of local ecosystems

and both have been implicated in the extinctions of island en-

demic reptiles (Iverson 1978; Pérez-Mellado et al. 2008; Nogales

and Medina 2009), we treat them the same as our other predator

categories.

Environmental characteristics of islands were determined

remotely using spatial analysis tools combined with field sur-

veys. Information on island area (km2) for inhabited islands

was available either from published or from government sources

(Foufopoulos and Ives 1999; Poulos et al. 2009). For uninhabited

islets without published spatial data we used the ArcGIS ArcMap

10 Field Calculator to calculate polygon area (km2) (spatial data

courtesy of the Natural History Museum of Crete). To determine

the time of separation of islands, we used fine-scaled bathymetric

data derived from navigation charts and targeted sonar measure-

ments collected by one of us (J. Foufopoulos) in the field, in

conjunction with geomorphological reconstructions of past sea

levels from global and local sea-level change graphs (Pirazzoli

1991, 1996; USDMA 1991; Foufopoulos and Ives 1999; Hurston

2009; Poulos et al. 2009). Evergreen bush vegetation cover was

calculated using a combination of Google Earth image data and

measurements on the ground (N = 29 islands). We walked 100-m-

long random transects and estimated the percent of the landscape

covered by woody evergreens, and representativeness of these

results were then confirmed by investigating large-scale aerial

photographs. Dry stone walls provide lizards refuge space from

predators. We therefore recorded the presence or absence of dry

stone walls on all islands to test for relationships with FID. We also

checked for a relationship between FID and human presence on is-

lands (humans inhabited 11 of 37 islands). Nonpredatory seabirds

preferentially nest on a small subset of uninhabited islets in the

Cyclades during the summer (Pafilis et al. 2009b; Foufopoulos,

unpubl. data). Although there are no records of seabirds preying

on P. erhardii, or lizards in general (Cooper et al. 2004; Pafilis

et al. 2009b), cohabitation on small islets may maintain flight be-

havior through historic avian predator recognition (Curio 1993;
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Blumstein 2006). We measured nesting seabird densities (N = 35

islands) by counting the number of nests per island, and assumed

each nest belonged to two birds (Foufopoulos and Mayer 2007).

ANTIPREDATOR BEHAVIOR

Flight initiation distance
We measured the FID of adult P. erhardii (N = 913) from 37 Cy-

cladic islands and one site on mainland Greece (Fig. 1, Table 1).

FID was recorded as the distance between the observer and the

focal animal when escape was initiated (Ydenberg and Dill 1986;

Blumstein et al. 2003; Amo et al. 2006; Pérez-Cembranos et al.

2013; Cooper et al. 2014). This method presumes that the focal an-

imal responds primarily to visual stimuli (the approaching preda-

tor). FID was measured in the morning hours during the species’

main activity period (May to early July) on warm (22–26°C),

sunny days with little wind (wind speed < 10 km/h). Exposed,

resting lizards were located by walking across an island in one

direction until an individual was detected through binoculars, usu-

ally from a distance of 5–10 m. Because island scrub habitat was

very similar on all study sites—being comprised of open rocky

ground interspersed by low (<80 cm), sclerophyllous evergreen

bushes (Juniperus phoenicea, Pistacea lentiscus)—visibility of

lizards was similar between sites. To simulate a predation event,

the same observer approached every focal animal by walking di-

rectly toward it at a practiced pace of approximately 80 m/min

(Pérez-Cembranos et al. 2013). We avoided measuring the flight

response of gravid female lizards due to their predilection for re-

maining close to refugia and differing physiological requirements

during the reproductive period (Braña 1993). Cooper et al. (2009)

found that at this speed detection distance did not have an effect

on FID in a similar species, P. lilfordi. All approaches in this study

were performed by the same individual (K. M. Brock), wearing

the same attire to avoid confounding effects (Amo et al. 2006;

Pérez-Cembranos et al. 2013). Further, the observer never re-

turned to previously sampled areas to avoid encountering the same

lizard twice. Because direction and angle of approach, as well as

observer shadow may have an effect on a lizard’s response to pre-

dation (Burger and Gochfeld 1990), we only performed head-on

approaches where no shadow was apparent. Both the published

literature (Dill and Houtman 1989; Bonenfant and Kramer 1996;

Amo et al. 2006; Li et al. 2014) and our own data suggest that FID

is positively correlated to the distance a lizard has to cover to reach

the nearest refuge; we therefore recorded this measure (henceforth

referred to as distance to the refuge, DR) for every observation of

FID (Dill and Houtman 1989; Bulova 1994; Kramer and Bonen-

fant 1997; Amo et al. 2006; Cooper and Pérez-Mellado 2012). As

suggested by previous studies of other lizards (see Cooper et al.

2009; Cooper 2011), we measured detection distance (distance

between the focal animal and surrogate predator when focal an-

imal detects the presence of the surrogate predator), as well as

body size (snout-vent length in cm) for a subset of the observed

lizards at several island sites to test for potential relationships with

FID (see Appendix S1).

Field autotomy
Field autotomy rates were calculated for each lizard population

as the proportion of individuals encountered that had previously

autotomized tails. We observed how often lizards lost their tails in

the field using well-established methodologies (see Pafilis et al.

2009a). Lizards were located using the same methods described

for FID. Once an animal was detected in the field, through binocu-

lars we observed the sex of the individual and whether its tail was

intact or previously autotomized. Previously autotomized tails are

readily distinguishable from intact tails by size, shape, color, and

scale morphology (Simou et al. 2008). We considered adult males

and females in analyses of field autotomy.

Laboratory autotomy
Beyond predation pressure, field autotomy depends on additional

factors such as aggressive intraspecific interactions, predator ef-

ficacy, microhabitat use, and average age of individuals within a

population (Turner et al. 1982; Medel et al. 1988; Bateman and

Fleming 2009; Pafilis et al. 2009a). We therefore used a standard-

ized measure of autotomy induced under controlled laboratory

conditions to distinguish between the innate predisposition of

members of a population to shed their tails and the environmen-

tally determined opportunity for this to occur (Pafilis et al. 2009a;

Hare and Miller 2010; Bateman and Fleming 2011). Laboratory

autotomy rates (LARs) were obtained for lizards from 28 of our

study sites (Fig. 1, Table 1). Individual lizards were wild-caught

using a noose to minimize chance of tail autotomy that often oc-

curs during capture by hand. Because ability to autotomize a tail

is affected by age (Bellairs and Bryant 1985; Pafilis and Valakos

2008), sex (Vitt 1981; Simou et al. 2008), and prior condition of

the tail (Arnold 1984; Bateman and Fleming 2009), as well as to

remain consistent with the methodologies used by Pafilis et al.

(2009a), we limited laboratory autotomy analyses to adult male

lizards with intact tails. Although it is possible that inclusion of fe-

males may produce slightly different results, a prior study on this

genus failed to reveal any intersexual differences (Pafilis 2003).

Lizards were housed in individual terraria (32 cm × 16 cm ×
12 cm) for 48 h before conducting the tail autotomy measure-

ments. Because autotomy in reptiles is potentially affected by an

animal’s body temperature (Daniels 1984; Pafilis et al. 2005),

animals were allowed to thermoregulate freely along a thermal

gradient until the time of procedure. Lizards were then individu-

ally placed on a rough cork substrate placed at a 45o angle where

they could firmly hold on. To standardize pressure across all trials,

the same observer placed a pair of calipers approximately 20 mm

behind the cloacal vent and then closed to half the diameter of
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Table 1. Island trait data for all 38 of our study sites.

Isolation Island Mean Total Vegetation Lizard
Island period area FID (cm) FAR LAR Predators predation cover (%) density

Naxos 0 448 276.7 0.71 0.55 r, sb, b, v, os, m 6 . . . 6
(NA) a (107) (21) (18)
Parnitha∗ 0 1000 226.5 0.67 0.55 r, sb, b, v, os, m 6 . . . 5
(PA) (13) (24) (47)
Mando 4 0.025 267.9 0.80 0.40 r, sb, b 3 51 6
(MN) aa (75) (30) (10)
Pano Fira 100 0.35 221.5 0.50 . . . r, b, m 3 50 3
(PF) dd (13) (12)
Fidussa 1000 0.632 172.5 0.64 0.33 r, sb, b
(FI) cc (8) (14) (12) 3 25 2.5
Kato Fira 1000 0.728 210.9 0.70 0.11 r, sb, b, m 4 51 5
(KF) d (21) (30) (18)
Daskalio 2000 0.018 217.5 0.71 . . . r, b 2 80 8
(DA) (4) (21)
Kato Kufonissi 5000 4.3 158 0.50 0.33 r, sb, b 3 . . . 1.5
(KK) (10) (20) (18)
Aspronissi 5450 0.038 191.7 0.65 0.27 b 1 80 12
(AS) cc (24) (20) (22)
Ovriokastro 5600 0.22 178.1 0.80 0.35 r, sb 2 22 5.5
(OV) (21) (25) (20)
Petalidi 5600 0.05 105.7 . . . . . . r 1 10 2
(PE) bb (23)
Parthenos 5650 0.004 158.9 . . . . . . b 1 100 11
(PR) aa (19)
Nikouria 5700 2.75 116.5 0.71 (21) 0.40 (10) r, sb, b 3 90 6.75
(NI) bb (20)
Kisiri 5750 0.012 127.7 0.64 0.20 r, b 2 22 3.5
(KI) bb (13) (11) (10)
Andros 5800 384 252.8 0.67 0.50 r, sb, b, v, os, m 6 . . . 4
(AN) (16) (24) (48)
Glaronissi 6100 0.0102 194.4 0.77 0.17 b 1 100 19
(GL) aa (25) (35) (17)
Mikri Vigla 6100 0.002 261.4 . . . . . . None 0 40 7
(MV) (7)
Gramvoussa 6700 0.759 113.9 0.56 0.30 r, sb, b 3 51 3.67
(GR) bb (33) (18) (10)
Makronissi 6700 0.039 183.5 0.73 . . . None 0 80 14
(MA) (69) (22)
Gaiduronissi 7100 0.133 139.1 0.69 0.23 r 1 13 8
(GA) (74) (42) (13)
Loumboudiaris 8100 0.096 117.1 . . . . . . None 0 38 8
(LO) (14)
Megali Plaka 8100 0.031 135.5 0.81 . . . None 0 35 1.5
(MP) (11) (16)
Pano Kufonissi 9000 13 186.7 0.75 0.40 (10) r, sb, b, v, os 5 . . . 0.5
(PK) (3) (16)
Andreas 9100 0.045 137.1 0.84 0.15 None 0 5 1.5
(AD) (14) (13) (13)
Lazaros 9100 0.0137 160.7 . . . . . . None 0 19 3
(LA) (14)
Keros 9150 15.05 222.9 0.60 0.40 r, sb, b 3 70 4
(KE) (7) (10) (5)

(Continued)
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Table 1. Continued.

Isolation Island Mean Total Vegetation Lizard
Island period area FID (cm) FAR LAR Predators predation cover (%) density

Schoinoussa 9550 8.83 234.4 0.76 0.45 r, sb, b, os, m 5 . . . 1
(SC) c (9) (13) (11)
Venetiko 9550 0.11 123.3 . . . . . . None 0 39 7
(VE) ee (21)
Agriloussa 9650 0.084 151.9 0.67 0.15 r 1 54 8
(AG) cc (21) (24) (20)
Irakleia 9800 18.078 191.2 0.75 0.58 r, sb, b, v, os, m 6 . . . 3
(IR) aa, e (17) (28) (12)
Ios 11,750 109.02 255.3 0.75 0.50 r, sb, b, v, os, m 6 . . . 5
(IO) (47) (56) (12)
Agios Nikolaos 11,900 0.89 137 0.60 0.20 r, sb 2 40 10
(NI) (22) (20) (15)
Agia Paraskevi 11,900 0.27 117 0.65 0.27 r, sb 2 50 14
(PA) (27) (20) (18)
Strongyllo 11,900 0.36 118.7 0.64 0.37 a 1 30 13
(ST) (31) (44) (16)
Dhonoussa 12,800 15 272.2 0.70 0.50 r, sb, b, m 4 35 3.5
(DH) aa (18) (20) (10)
Amorgos 200,000 123 243.8 0.72 0.40 r, sb, b, os, m 5 80 2
(AM) b (8) (22) (10)
Chtenia 450,000 0.004 100 1 0 None 0 70 12
(CH) aa (15) (18) (6)
Anafi 3,600,00049 168.9 0.61 0.32 r, b, m 3 . . . 4
(AF) aa (19) (21) (25)

Islands and their corresponding abbreviations (Fig. 1) are listed by increasing period of isolation. Isolation period is given in years and is the inferred age

of the island as calculated from bathymetric data and regionally calibrated sea-level change graphs. Parnitha is marked with an asterisk (also in Fig. 1) to

indicate it is a mainland location. Island area is in square kilometers. The average flight initiation distance (FID) is reported in centimeters, and sample sizes

are given in parentheses. Field autotomy rates (FAR) and laboratory autotomy rates (LARs) are reported as the fraction of tails autotomized per island with

sample sizes in parentheses. Predator categories are listed for each island (r = rats, sb = sand boas [Eryx jaculus], b = birds, v = vipers [Vipera ammodytes],

os = other saurophagus Colubrid snakes, and m = mammals). The “Total Predation” score is given in the last column and is the summation of predator

categories present on an island. Parnitha (marked by an asterisk) is a Greek mainland location (located 15 km north of Athens, 38.1734°N, 23.7174°E). Islands

used in our isolation analyses are notated with matching symbols: predator-rich baseline islands (a, b, c, d, e) and corresponding islets that had a direct split

(aa, bb, cc, dd, ee) (N = 16 for FID, and N = 12 FAR and LAR). Fields for which we could not obtain data are marked with ellipses.

the tail for a period of 15 s (Pérez-Mellado et al. 1997). At the

end of the 15 s trial, we recorded whether the lizard autotomized

or not. Each lizard was tested only once and was not included in

other experiments. LARs are reported as the proportion of tails

that were autotomized for each island population.

Effects of isolation on antipredator behavior
Land-bridge islands provide an excellent system to systematically

test the effects of duration of isolation on loss of antipredator be-

haviors. We estimated ancestral predator diversity by assuming all

present-day islands shared the same predator communities when

they were joined as Cycladia prior to Pleistocene sea-level rise.

All previously mentioned predator types were included in analy-

ses of isolation. We restricted our isolation analyses to those islets

that split directly off from large, predator diverse post-Cycladia

islands (FID N = 17, field and laboratory autotomy N = 12, see

Table 1 and Appendix S1), for which we have confidence of the

ancestral predator community, as opposed to being derived sec-

ondarily from an intermediate-sized island that had itself split off

from a large island.

STATISTICAL ANALYSES AND MODEL SELECTION

We used a mixed modeling approach to study how flight behavior

changed with varying degrees of predation (Table 2). Analysis of

FID was completed fitting the following model:

y = Xβ + Zu + ε.

The fixed effects (β) are the categorical predation vari-

ables. Random effects (u), are given by a vector with mean

E (u) = 0, and a covariance matrix var (u) = G. We used random

effects for intercept and distance to the refuge, with the subject

EVOLUTION 2014 7



KINSEY M. BROCK ET AL.

Table 2. Selection criteria data for the seven mixed models constructed to explain variation in FID of Cycladic populations of P. erhardii.

Model AICc � AICc Akaike weight

V + OS + M + SB + B + R 10,435.906 - 0.99999813
M +B + OPM,B 10,462.648 26.742 1.559 × 10-6

M + V + OPM,V 10,465.908 30.002 3.056 × 10-7

M + OPM 10,474.875 38.969 3.451 × 10-9

B + OPB 10,476.109 40.203 1.862 × 10-9

V + OPV 10,478.728 42.822 5.027 × 10-10

� Predation 10,487.734 51.828 5.568 × 10-12

All models include flight initiation distance as the dependent variable, and distance to the refuge (DR) as a covariate (FID and DR Pearson corr = 0.0358,

P < 0.001, N = 913). The output of our final model (boldfaced), which considers all predator categories separately, suggests not all predator categories

are interchangeable and each is distinctly important. Predator predictors in this study include: V = vipers; OS = other saurophagus Colubrid snakes; M =
mammalian predators; SB = sand boas (Eryx jaculus); B = predatory birds; R = rats; OP = other predators, calculated as the sum of all other predators

present besides the categorical predator predictor entered separately in the model; � Predation = summary of all predator categories on an island. Models

were formulated a priori (Burnham and Anderson 1998) and were compared using AICc values and their associated Akaike model weights, calculated as

wi = exp( − �i /2)/
∑M

r=1 exp( − �r/2) (Turkheimer et al. 2003).

category being island. Detection distance, lizard body size (snout-

vent length), and the relative abundance of intraspecific lizards

were also tested for relationships with FID to implement as poten-

tial covariates in our models. We tested for correlation between

predator categories, and addressed this potential situation with

mixed modeling techniques followed by model selection.

To identify predators most important for the maintenance

of specific defenses, we compared seven models developed from

our a priori knowledge of the study area and published literature

on predator–lizard interactions (Nowak et al. 2008; Pafilis et al.

2009a; Reynolds and Bruno 2013). One model (“Total Preda-

tion” � Predation) simply summed the number of categories of

predators present for each island (Cooper et al. 2004; Pafilis et al.

2009a,b; Cooper and Pérez-Mellado 2012). This model assumes

that each predator category adds a similar amount to predation

pressure. At the other extreme, we tested a model that considers

all predator categories simultaneously and individually (“V + OS

+ M + SB + B + R” Table 2). Other models followed an interme-

diate logic in individually testing the effects of specific predators

thought to have the greatest impact on FID, with all remaining

predators being pooled into an aggregate “other predators” (OP)

category (Table 2). Based on prior research in this system and our

knowledge of hunting strategies in general, we formulated five

models that highlighted the role of mammals (M), avian preda-

tors (AP), and vipers (V) in determining FID. As a result the

composition of the “OP” category varied from model to model

and this was denoted with differing subscripts (Table 2).

Models were compared using AICc values and their associ-

ated Akaike model weights

wi = exp (−�i/2) /
∑M

r=1
exp(−�r/2)

(see Burnham and Anderson 1998; Turkheimer et al. 2003). We

used AICc instead of AIC scores to correct for finite sample size

and decrease the probability of overfitting data with excessive

parameters (Burnham and Anderson 2002, 2004).

Field and LARs were studied using generalized linear mod-

els. We formed three competing hypotheses prior to data analysis

to explain variation in autotomy at the island level, which we again

compared using AICc and the corresponding Akaike weights. Pre-

dictors implemented in the model building process include: “Total

Predation” (the summation of all predator categories present on an

island), “0 Predation” (a categorical “yes/no” variable noting the

presence or absence of any predators on an island), and “Vipers”

(a categorical “yes/no” variable noting the presence or absence of

vipers on an island). An earlier study of 15 Mediterranean lizard

species found that ease of autotomy was largely explained by the

presence of vipers (Pafilis et al. 2009a), therefore, we specifically

analyzed the effects of vipers on the retention of antipredator be-

havior. Intercept was a fixed effect in all autotomy models. Given

the relatively small sample sizes (N < 30 islands) of field and lab-

oratory autotomy data, we constructed simple models with just

one predictor variable to avoid overfitting. To avoid potential con-

founding effects of excluding sex from the models, we compared

male and female field autotomy rates with Pearson’s Chi-square

analysis.

To examine effects of isolation time on FID and autotomic

capacity, we modeled behaviors from islets directly separated

from larger post-Cycladia populations (Table 1 and Appendix

S1). Large, post-Cycladia islands similar to Naxos (with diverse

present-day predator regimes) were used as a baseline to compare

younger, smaller islets that were directly separated by rising sea

levels. Of our 38 study locations, 17 islets fit our selection criteria

and were directly separated from much larger, predator-diverse

islands. Autotomy data (both field and laboratory measurements)

only existed for 12 of this subset of 17 islands. We compared two

mixed models of each antipredator strategy, one using the same
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variables from the best predation model, and the other adding

period of isolation (Ln-transformed) as a predictor variable to

see if time of isolation improves predictive power of antipredator

behaviors on islands. All correlations are given using Pearson’s r

unless otherwise noted. Where hypotheses had a clear direction,

we report one-tailed P values.

Results
FLIGHT INITIATION DISTANCE

FID varied widely between individual lizards (10–855 cm:

X̄ = 180.2 cm, N = 913). As expected, FID was positively corre-

lated with distance to refuge (r = 0.358, one-tailed P < 0.001, N =
913). A preliminary analysis of a large subset of our data revealed

similar FIDs for males and nongravid females (F1,309 = 0.308,

P = 0.579, N = 142 females, 169 males), thus we included all

nongravid individuals in our analyses. Predator category measure-

ments were correlated with each other (Cohen’s Kappa, K range:

0.194–0.857, P < 0.038, N = 38) due to the partially nested na-

ture of where species occur on islands. Detection distance, lizard

body size, relative abundance of intraspecific lizards, nesting non-

predatory seabird density, vegetation cover, presence of humans,

and presence of walls had no relationship with FID, hence they

were not included as covariates in our models (see Appendix S1).

FID was best described by the diversity of predator types

of an island (Table 2). Lizards from islands with greater predator

diversity fled at greater distances (r = 0.618, one-tailed P < 0.001,

N = 38) (Fig. 2). Predator diversity decreases with island size

(r = 0.676, P < 0.01, N = 38), and small islets (<0.05 km2)

tend to be completely predator-free (Table 1). An analysis of the

marginal means from the final model shows that predatory birds

and mammals exerted the strongest effect on FID, whereas the

effects of vipers, sand boas, rats, and other snakes were small

(Fig. 3). These small effects are apparently distinct, however,

as the model that accounted for each predator class individually

greatly outperformed the model that separated birds and mammals

and lumped all other predators together (Table 2).

FIELD AUTOTOMY

We obtained field autotomy rates for P. erhardii at 32 of our 38

study sites (mean = 0.7, range: 0.5–1.0, N = 32; Table 1). Of 301

females 209 (approximately 69%) had autotomized tails, and of

430 males 306 had previously autotomized (approximately 71%).

Autotomy rates were similar for males and females pooled across

islands (χ2 = 0.254, P = 0.614, N = 731), so we combined

data from both sexes in further analyses. Of our competing gen-

eralized linear models, “0 Predation” had the highest likelihood

and associated AIC weight (Table 3). Field autotomy rates were

higher on islands without any predators (X̄= 0.85, N = 4) than on
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Figure 2. Scatterplot of mean flight initiation distance by total

number of predator types per island. Each circle represents an

island. Mean FID increases as predation regime intensifies (R2 =
0.382, r = 0.618, P < 0.001, N = 38).
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Figure 3. Effects for how each class of predators affected flight

initiation distances estimated by the marginal means from the

best model [FID � DR + V + OS + M + SB + B + R]. Means and

error bars represent the average change in FID given the pres-

ence of that predator. Means notated by asterisks have 95% con-

fidence intervals that do not overlap the overall average, which

is notated as 0 (N = 913). Large lizard FIDs are most strongly as-

sociated with the presence of mammalian and aerial predators,

although all predators have an effect on the expression of this

behavior.
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Table 3. Model selection criteria for tail autotomy rates in the field (N = 32) and laboratory (N = 28).

Measure Model AICc �AICc Akaike weight

Field autotomy 0 Predation −61.568 - 0.998183
Vipers −48.595 12.973 1.52 × 10-3

� Predation −46.389 15.179 5.05 × 10-4

Laboratory autotomy � Predation −44.376 - 0.998203
Vipers −31.694 12.682 1.76 × 10-3

0 Predation −26.136 18.240 1.09 × 10-4

The “0 Predation” model fit a line through autotomy data separated into predator-free islands and islands with any amount of predators, the “Vipers” model

separated islands with and without vipers, and the “� Predation” model accounted for predator diversity of an island. Generalized linear models were

formulated a priori and evaluated using AICc values and corresponding Akaike weights. Best models for each measure of autotomy are boldfaced. Field

autotomy rates were best explained by the “0 Predation” model, which grouped islands into two groups: predator-free islands and islands with any amount

of predator types. Laboratory autotomy rates follow a pattern that is best explained by the total number of predator types on an island (� Predation).

Neither measure of autotomy was especially influenced by the presence of vipers as predicted.

all islands with even one predator category (X̄ = 0.67, N = 28)

(Mann–Whitney U = 7.000, P = 0.005, N = 32). Additionally,

field autotomy rates did not differ with predator diversity among

islands having one to six predator types (Kruskall–Wallis, P =
0.143, H = 8.241, df = 5, and see Fig. 4A). Interestingly, field au-

totomy rates were significantly higher for males than females only

on predator-free islands (χ2 = 19.324, P < 0.001, N = 69). We

found no association between relative abundance of lizards and

field autotomy in an analysis of all islands (Spearman’s rho =
−0.017, N = 32), and islands without predators (Spearman’s

rho = −0.316, N = 4).

LABORATORY AUTOTOMY

LARs varied substantially across the different island populations

(X̄ = 0.34, range: 0–0.58, N = 28), and increased linearly with

increased predator category diversity (Pearson r = 0.825, one-

tailed P < 0.001, N = 28, Fig. 4B), similar to FID (Pearson

correlation of mean FID and LAR: r = 0.644, one-tailed P <

0.001, N = 28). Of our competing models, summing the number of

predator types (“Total Predation”) explained most of the variation

in laboratory autotomy (Table 3). In contrast, models separating

islands with and without vipers, or separating islands with and

without any predators, had much lower model weights (Table 3).

Earlier work in a related system had emphasized the importance

of vipers as a driving factor underlying the retention of autotomy

on islands with few other predators (Pafilis et al. 2009a). In our

sample, vipers only occurred on large, predator-rich islands. Given

this potential confounding factor, we performed a post-hoc test

that compared the correlation of the entire sample (r = 0.825,

P < 0.001, N = 28, linear regression) with one that excluded

islands with vipers (r = 0.672, P < 0.001, N = 22). Given that the

correlation remained robust, we conclude that vipers contribute

to the relationship of laboratory autotomy to predator diversity,

but that autotomy rates are shaped by predation pressure beyond

the presence of vipers.

RELATIONSHIPS BETWEEN MEASURES OF DEFENSE

Against expectation, field autotomy rates were not correlated with

laboratory rates (Spearman’s rho 0.088, P = 0.655, N = 28). Av-

erage FID per island was positively correlated with LAR (Pearson

r = 0.644, one-tailed P < 0.001, N = 28) but was not obviously

related with field autotomy rate (Pearson r = −0.024, one-tailed

P = 0.449, N = 32).

EFFECTS OF ISOLATION ON ANTIPREDATOR

BEHAVIOR

Lizards from islets that were directly separated from larger, more

predator diverse islands had shorter FIDs than lizards from the

larger islands (average difference of 67.81 cm, N = 17). Fur-

ther, populations isolated for the longest period of time displayed

shorter than average FIDs (Fig. 5A). A comparison of two mixed

models (one with and one without isolation period) revealed that

“Predation + Isolation” had the best fit for FID (�AICc = 309.4,

Table 4). Thus, our results suggest duration of isolation has an

effect on flight behavior in addition to the prevailing predation

environment (Pearson r = −0.477, one-tailed P = 0.036, N =
17), with the most extreme cases of island age driving the pat-

tern (the youngest and second-oldest islands, Mando and Chtenia,

respectively). Current predator diversity of an island was not cor-

related with duration of isolation (Ln-transformed, r = −0.177,

P = 0.497, N = 17).

Lizard populations occurring on islets that became separated

from predator-rich islands were less likely to shed the tails in

laboratory tests (19% average, N = 12). However, in contrast to

the results for FID, the addition of isolation time did not improve

autotomy models (see Fig. 5B and Table 4).

Discussion
In this study, we examined factors underlying the erosion of ances-

tral antipredator behaviors in isolated populations living in island
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Figure 4. (A, top) Field autotomy rate (FAR) versus total num-

ber of predator categories per island (Total Predation). Field au-

totomy rates did not increase with rising predator diversity (R2 =
0.039, P = 0.279, 95% CI � Predation = −0.027 to 0.008, df = 1,

N = 32). Conversely, predator-free islands had significantly higher

FARs than islands with any amount of predation (mean ranks of

predator-free vs. predator islands were 28.75 and 14.75, respec-

tively, U = 7.000, Z = −2.798, P = 0.005, N = 32, Mann–Whitney

U-test). Because past work (Pafilis et al. 2009a) suggested a special

effect of viperids on autotomy rates, islands inhabited by vipers

are marked with triangles. (B, bottom) Laboratory autotomy rate

(LAR) versus total amount of predator categories per island (To-

tal Predation). LARs increased steadily with increased number of

predator categories present (R2 = 0.680, P < 0.001, 95% CI � Pre-

dation = 0.046–0.082, df = 1, N = 28). Triangles represent islands

with vipers, and circles islands without vipers.
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Figure 5. (A, top) Average flight initiation distance (cm) on islets

against duration of isolation (Ln-transformed) from the main is-

land landmass (R2 = 0.200, Pearson r = −0.477 (one-tailed), P =
0.036, N = 17). (B, bottom) Laboratory autotomy rates against du-

ration of isolation (Ln-transformed) (linear regression R2 = 0.094,

Pearson r = −0.306, P = 0.333, N = 12). This represents the rela-

tionship between antipredator defenses with increasing period of

isolation.

environments. We predicted that flight behavior would vary across

distinct island populations of lizards, and decrease with loss of

predator types. Results match our predictions for two main lizard

antipredator defenses, flight response and laboratory autotomy

(Figs. 2 and 4B). For FID, each predator type had an impact, with

EVOLUTION 2014 1 1



KINSEY M. BROCK ET AL.

more predator-diverse islands having the strongest responses. For

autotomic ability, predator diversity predicted ease of autotomy

with no special effect of vipers apparent, counter to our second

prediction. Finally, lizard populations from islets that had been

isolated for the longest period of time under conditions of reduced

predator diversity indeed displayed decreased expression of flight

behavior.

Predator diversity was positively correlated with longer FID,

and the absence of mammalian and avian predators had a strong

effect on the erosion of flight behavior in particular (Figs. 2, 3,

5A). Presence of either mammalian or avian predation increased

lizard FID on average by 60 cm and 40 cm, respectively (Fig. 3).

This is probably best explained by the particular hunting strate-

gies employed by these predator guilds, and the ability of lizards

to recognize these particular predators prior to an attack. Feral

cats (F. catus) and stone martens (M. foina), the main mammalian

predators on the islands, hunt by using speed to close the gap

between themselves and the prey (Peck et al. 2008). Similarly,

predatory birds fly in from a distance, often casting a recognizable

shadow (Curio 1976; Smith 1976). These approaches differ dra-

matically from snake predators in this island system. Vipers usu-

ally employ a sit-and-wait hunting strategy and all snake species

remain relatively close to the ground before striking prey (Valakos

et al. 2008; Pafilis et al. 2009a). Hence, the reliance on speed to

approach a prey item from afar means that lizards that escape

early reap the largest benefits. However, it is important to em-

phasize that chemosensory cues, although not evaluated in this

study, may be more important for detecting at least some types

of predators (Cooper 2003). Nonetheless, the candidate model

that simply summed the number of predator categories present

(� Predation), had the least predictive power, whereas the model

that considered all predator categories separately had a model

weight close to 1, even after the penalty AICc imposes for the

inclusion of six explanatory variables (Table 2). This suggests

that predator categories are not all interchangeable and that each

is important in a distinct manner in determining the expression of

flight behavior (Table 2), and that simply aggregating the number

of predator groups is not sufficient to predict FIDs.

Populations of P. erhardii showed declines in flight behavior

with increasing duration of isolation, particularly on predator-

poor islands isolated for milennia, suggesting that time tells us

something more about antipredator behavior than current predator

community alone (Fig. 5A, Table 4). This evidence for gradual

loss expands on past work that showed that island populations

have attenuated antipredator responses (Blumstein 2002;

Blumstein and Daniel 2005; Cooper and Pérez-Mellado 2012;

Cooper et al. 2014). Although these studies have shown that iso-

lated populations have lost some of their antipredator defenses,

they provide little insight into the rate at which behaviors change

(see Cooper et al. 2014). Reduced flight behavior was particularly

evident during visits to very old islands (see Fig. 5A and B):

lizards from some of the oldest islands (450,000 years and older)

were tame enough to approach within arm’s reach, and would

sit in one’s hand after capture without attempting to flee (K. M.

Brock, pers. obs.). Because flight behavior is largely recognized

as an “experience-dependent” antipredator behavior (Blumstein

2002; Blumstein and Daniel 2005; Rödl et al. 2007), tameness

on islands with limited predation is probably due to an inability

to adequately identify predators and correctly respond. Previous

work has suggested that loss of vigilance, a type of antipredator

behavior, can occur rapidly (Blumstein 2002; Li et al. 2014). We

found that short-term isolation (4–1000 years) of populations ex-

perienced marginal reduction in FID (8–61 cm), with a greater

loss occurring over thousands of years (15–176 cm). Further, the

inability for insular populations to mount an adequate endocrine

stress response could also be related to the tameness we observed

on our oldest islands (see Rödl et al. 2007). An effect of isolation

remains even if predator diversity is taken into account (Table 4),

thus suggesting an impact of duration of isolation directly on the

extent of FID erosion. Extreme tameness on islands is probably

the result of a combination of decreased predator diversity (es-

pecially hawks and mammals) and subsequent loss of predator

experience and recognition, an effect that increases with period

of isolation.

Researchers have long debated whether the highest inci-

dences of autotomy should occur in areas with inefficient preda-

tors (because failed attacks are likely to result in autotomy and

escape), or areas with the greater diversity of predators (Cooper

et al. 2004; Pafilis et al. 2009a; Bateman and Fleming 2011;

reviewed in Bateman and Fleming 2009). In contrast to other

studies on Mediterranean herpetofauna (Diego-Rasilla 2003;

Cooper et al. 2004; Pafilis et al. 2008, 2009a), we found that field

autotomy rates did not reflect prevailing predation levels (in terms

of predator diversity), nor were they correlated with standardized

laboratory autotomy trials. Counterintuitively, the highest rates

of autotomy were actually observed on islets completely isolated

from predators, suggesting that autotomy on predator-free islets

was driven by intraspecific aggression and not by predation. In-

creased intraspecific aggressiveness on islets without predators is

likely a product of intensified competition for food, territory, and

mates (Castilla and Van Damme 1996; Pafilis et al. 2009b; Raia

et al. 2010; Capula and Aloise 2011). Our results also suggest

that intraspecific aggression is more intensive among male indi-

viduals in predator-free environments. In an effort to prevail over

their (extremely numerous in the case of dense populations) rivals,

male lizards attack conspecifics (Knell 2009). These fierce battles

regularly result in amputated body limbs (Jennings and Thompson

1999; Knell 2009; Pafilis et al. 2009b; Vervust et al. 2009), and

may include cannibalism (Elgar and Crespi 1992; Bonsall and

Klug 2011). Thus, it is possible the high rates of field autotomy
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Table 4. Selection criteria for alternative models investigating the importance of duration of isolation on antipredator behaviors.

Measure Model AICc � AICc Akaike weight

Field autotomy 0 Predation −19.283 - 0.91158
0 Predation + Isolation −14.617 4.666 8.84 × 10-2

Laboratory autotomy � Predation −21.617 - 0.81967
� Predation + Isolation −18.607 3.01 1.8 × 10-1

Flight initiation distance R + SB + B + M + Isolation 3930.11 - 0.99999
(+DR) R + SB + B + M 4239.51 309.4 1 × 10-10

Winning models are boldfaced. Both field autotomy rate (N = 12), and laboratory autotomy rate (N = 12) predation models did not improve by adding period

of isolation, possibly due to small sample size and the penalty AICc imposes on additional explanatory variables. However, adding duration of isolation

(Ln-transformed) as a covariate (in addition to distance to refuge) did improve our best predator model of flight initiation distance (N = 371). Because these

analyses were performed on a subset of islands that directly split from larger, more predator diverse islands, there are no vipers (V) or other saurophagus

Colubrid snakes (OS) present, thus we did not include them in our isolation mixed models.

we observed on predator-free islands could be due to intraspe-

cific agonistic encounters, although our results do not indicate a

direct correlation between population density and field autotomy.

However, this result could be due to small sample size or factors

unaccounted for in this study. This phenomenon should be in-

vestigated more specifically in the future, by taking into account

factors such as sex ratio, islet carrying capacity, food abundance,

marines subsidies, etc.

In contrast to a similar study of autotomy in Mediterranean

lizards by Pafilis et al. (2009a), we found no relationship between

field and LARs, which likely reflects that none of that study’s lo-

cations (with the exception of Dragonada) were small enough for

small-islet intraspecific aggression effects to come into account.

Interestingly, only the lizards from Dragonada, the one island eco-

logically similar to the present predator-free islets, displayed the

same contrasting pattern of high field and low LARs as seen in

the present study (see Pafilis et al. 2009a). Small islet populations

of P. erhardii may differ in age structure because lizards are not

being killed by predators, and therefore contain, on average, older

individuals that have likely encountered more aggressive events

and thus have more regenerated tails (Bateman and Fleming 2009;

Pafilis 2009a; Pleguezuelos et al. 2010). Further investigation is

required into intraspecific dynamics, food availability, and in-

traspecific interactions on predator-free islands to explain why

these predator-free populations have such high autotomy rates in

the field and yet low rates in standardized trials.

LARs increased linearly with predator diversity. In distinct

departure from field autotomy, LARs declined linearly with the

loss of any predator category (Fig. 4B). Of our three competing

hypotheses, the model that added all predator types captured the

most variation in LARs (Table 3). A post-hoc investigation of

the influence of vipers supports the claim that overall predator

diversity, and not viper presence alone, has a strong relationship

with retained autotomic abilities. Thus, even after the removal of

islands where vipers were present from our analysis, we found a

linear relationship between LARs and number of predator types.

Indeed, nonviperid snakes, as well as mammalian predators in-

cluding rats, will attack lizards and induce autotomy (McCallum

1986; Hare and Miller 2010, J. Foufopoulos, pers. obs.), and it

appears that all predator categories can exert selective pressure on

the maintenance of tail autotomy.

In general, islets that were isolated for longer periods of

time lost more predator types, specifically vipers, mammals, other

saurophagus Colubrid snakes, and hawks, although there was no

statistically significant relationship between predator diversity

and island isolation (see Table 1 and Appendix S1). This pat-

tern is consistent with other island systems around the world that

have fewer predator species relative to mainland areas of com-

parable size and habitat type (Darwin 1839; MacArthur and Wil-

son 1967; Blumstein and Daniel 2005; Foufopoulos et al. 2011;

Cooper and Pérez-Mellado 2012). LARs were not correlated with

prolonged duration of isolation (Fig. 5B), which was surprising

given the lifetime fitness costs of autotomy (Ballinger and Tin-

kle 1979; Vitt and Cooper 1986; Pafilis et al. 2009a; Cromie and

Chapple 2013). Although our model that accounted for isolation

period and predation performed somewhat worse than our model

that considered only predation (Table 4), we feel that this issue

would be worth revisiting with a larger sample size containing

more islands younger than 6000 and older than 9000 years. Al-

though a less-refined fear response and reduced ability for tail

autotomy may be advantageous to a lizard’s fitness in a less-

diverse predation environment (Cooper et al. 2004, 2014; Rödl

et al. 2007), individuals may not have the capacity to adapt if

a novel predator were suddenly introduced (Beauchamp 2003;

Baillie et al. 2004; Blackburn et al. 2004; Losos et al. 2006;

Bonnaud et al. 2010). Our data suggest that when it comes to

susceptibility to invasive predators (cats and rats in our case), the

smaller and older the population, the more likely that population

will be susceptible to predation.

We demonstrated that expression of antipredator behaviors in

animals with multiple predators varies sensitively according the

number of predator species the prey is exposed to, and that certain
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predator types are more important for the preservation of prac-

ticed behaviors, such as FID. A basic yet novel finding was that

FID, a main antipredator behavior, decayed largely according to

period of isolation from intense predation pressure. Interestingly,

the current predation regime of an island effectively predicts the

degree of expression of antipredator behavior, but for FID, the du-

ration of isolation improves our understanding of this trajectory.

Taken together, our results suggest that tameness is strongly se-

lected for on predator-free islands, where the energetic and fitness

costs of maintaining antipredator behaviors greatly outweigh the

benefits. Costly antipredator behaviors may fade away quickly

in the absence of selective pressure; however, extreme tameness

may result from many years of isolation from predators.
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Pérez-Mellado, V., J. A. Hernández-Estévez, T. Garcı́a-Dı́ez, B. Terrassa, M.
M. Ramón, J. Castro, A. Picornell, J. Martı́n-Vallejo, and R. Brown.
2008. Population density in Podarcis lilfordi (Squamata, Lacertidae), a
lizard species endemic to small islets (Spain). Amphibia-Reptilia 29:49–
60.

Pirazzoli, P. A. 1991. World atlas of Holocene sea-level changes. Elsevier
Science, Amsterdam.

———. 1996. Sea-level changes: the last 20,000 years. Wiley, Chichester.
Pleguezuelos, J. M., M. Feriche, S. Reguera, and X. Santos. 2010. Patterns of

tail breakage in the ladder snake (Rhinechis scalaris) reflect differential
predation pressure according to body size. Zoology 113:269–274.

Poulos, S., G. Ghionis, and H. Maroukian. 2009. Sea-level rise trends in the
Attico-Cycladic region (Aegean Sea) during the last 500 years. Geomor-
phology 107:10–17.

Rackham, O., and A. Grove. 2001. The nature of Mediterranean Europe: an
ecological history. Yale Univ. Press, New Haven, CT.

Raia, P., F. Guarino, M. Turano, G. Polese, D. Rippa, F. Carotenuto, D. M.
Monti, M. Cardi, and D. Fulgione. 2010. The blue lizard spandrel and
the island syndrome. BMC Evol. Biol. 10:289.

Reynolds, P., and J. Bruno. 2013. Multiple predator species alter prey behavior,
population growth, and a trophic cascade in a model estuarine food web.
Ecol. Monogr. 83:119–132.
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