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Gestion de la Biodiversité, Paris, France, 5Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, South        Africa

Abstract

Convergent evolution can explain similarity in morphology between species, due to selection on a fitness-enhancing
phenotype in response to local environmental conditions. As selective pressures on body morphology may be strong, these
have confounded our understanding of the evolutionary relationships between species. Within the speciose African
radiation of lacertid lizards (Eremiadini), some species occupy a narrow habitat range (e.g. open habitat, cluttered habitat,
strictly rupicolous, or strictly psammophilic), which may exert strong selective pressures on lizard body morphology. Here
we show that the overall body plan is unrelated to shared ancestry in the African radiation of Eremiadini, but is instead
coupled to habitat use. Comprehensive Bayesian and likelihood phylogenies using multiple representatives from all genera
(2 nuclear, 2 mitochondrial markers) show that morphologically convergent species thought to represent sister taxa within
the same genus are distantly related evolutionary lineages (Ichnotropis squamulosa and Ichnotropis spp.; Australolacerta
rupicola and A. australis). Hierarchical clustering and multivariate analysis of morphological characters suggest that body,
and head, width and height (stockiness), all of which are ecologically relevant with respect to movement through habitat,
are similar between the genetically distant species. Our data show that convergence in morphology, due to adaptation to
similar environments, has confounded the assignment of species leading to misidentification of the taxonomic position of I.
squamulosa and the Australolacerta species.
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Introduction

Convergent evolution is attributed to strong selection on

a fitness-enhancing phenotype in response to local environmental

conditions [1]. In reptiles, convergent evolution is found among

species of Anolis lizards [2–4], amongst others, showing that

similarities in environmental conditions and habitat use may elicit

similar adaptive evolutionary responses by directional selection

regardless of ancestry. Similar morphologies are also observed

among distantly related rock-dwelling [5–8], burrowing [9–12], as

well as arboreal lizards [13–15]. In each of these cases, adaptation

is ascribed to selection on an animal’s body plan in order to

optimize performance in a given habitat. For example, rock-

dwelling species typically have flat heads and bodies that allow

them to fit into narrow cracks, yet long forelimbs adapted for

climbing [8,16]. In contrast, some arboreal species that specialize

on narrow substrates have short limbs and narrow, tall bodies [17–

20].

Southern Africa has a diverse assemblage of macro-habitats,

from tropical forest to desert, and ranges from sea level to more

than 3000 m. This complexity at the macro scale is interwoven

with a diversity of micro-habitat structure that includes different

substrates and vegetation organization, and the heterogeneity at

both scales may be a strong factor in producing high diversity and

endemism of reptiles in the region [21,22]. Indeed, many species

are restricted and habitat specific at the micro scale (e.g.

chameleons, cordylids), whilst others are apparent generalists

(e.g. skinks). Morphological adaptation to this diversity in habitat

structure should be reflected in phylogenies as lineages showing

morphological convergence in species living in similar habitat

structure, or divergence in species occupying different habitat

structure.

Although phenotypic convergence is a common explanation for

morphological similarity, such occurrences can be the result of

phylogenetic history, chance and/or pre-existing constraints

(‘exaptation’) rather than adaptation to similar environments [1].

Natural selection favors traits that increase fitness, even if the trait

did not necessarily evolve in response to those selective pressures.

While experimental conditions simulating environments can

convincingly demonstrate whether natural selection drives con-
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vergence in morphological traits [23], it is more difficult to test

convergence through adaptation to shared environments within

a natural setting [24].Yet, repeated evolution of convergent

phenotypes in divergent lineages inhabiting similar environments

is often considered strong evidence of natural selection operating

on morphological traits.

Here, we examine convergence of ecologically relevant pheno-

typic traits to habitat structure (cluttered and open vegetation) in

a diverse group of lizards (Eremiadini, Lacertidae) from southern

Africa. We predicted that ecologically relevant traits would

converge in association with habitat similarity, regardless of

evolutionary history. We postulated that species utilizing cluttered

habitats would have relatively slender bodies and short limbs

compared to species utilizing open habitats, to allow for efficient

movement through the cluttered matrix [17,25,26]. To test this

hypothesis, we investigated the evolutionary relationships in the

Eremiadini using a multi-locus phylogenetic approach, in combi-

nation with principal components analysis and hierarchical

clustering for morphological data on traits that are considered

ecologically relevant to lizards [8,27]. The clusters were then

compared a priori to habitat structure to examine occurrences of

convergence in morphology between species.

Methods

Sampling
Taxa chosen for the study were genera from the southern

African clade of the lacertid lizards from the tribe Eremiadini (five

genera out of 20 total genera in Eremiadini). Samples for the

genetic analyses were obtained either from field trips conducted by

myself or from samples, collected by various researchers, housed in

the collection at the South African National Biodiversity Institute.

Some of the individuals sampled have been sequenced previously

for the 16S and RAG1 genes, and accession numbers and

references are provided in Table S1. Samples for the morpho-

metric analyses included measurement of live lizards during field

work, as well as voucher specimens housed at the Port Elizabeth

Museum (PEM), the Ditsong Museum (TM) and the Ellerman

Collection at Stellenbosch University.

Ethics Statement
Ethics clearance was obtained from University of Stellenbosch

(permit no. 11NP-EDW01) and South African National Bio-

diversity Institute (permit no. 002/10), permitting the collection

and handling of the lizards, as well as the sampling of tail tissue.

Laboratory Protocols
Genomic DNA was isolated from the tail or liver tissue

preserved in 95–100% ethanol according to standard procedures

involving a proteinase K digestion followed by salt-extraction [28].

Standard PCR procedures were utilized to amplify two mito-

chondrial (16S and ND4) and two nuclear genes (RAG1 and

KIAA-2018). The nuclear genes were chosen because these genes

have been shown to evolve at a rate that may allow high

confidence in both the terminal and the deeper nodes [29,30]. For

the mitochondrial genes, the primer pairs ND4 and tRNALeu

[31], and L2510 and H3080 16S rRNA [32] were used to amplify

the ND4 and 16S genes, respectively. The primers RAG1-F0 and

RAG1-R1 [33], and KIAA2018-F1 and KIAA2018-R2 [30] were

used to amplify the nuclear RAG1 and KIAA-2018 genes,

respectively.

Amplification of the four genes was carried out with ,25–

50 ng/ml genomic DNA and a 25 ml reaction containing

a thermophilic buffer (50 mM KCl, 10 mM Tris–HCl, pH 9.0),

1.5 mM MgCl2, 0.2 mM of each primer, 0.2 mM dNTPs, and

0.025 U/l Taq polymerase. Cycling profile for 16S, ND4 and

KIAA-2018 genes included an initial denaturing step at 94uC for

4 minutes, followed by 35 cycles of 94uC for 30 s, 50–55uC for

30 s, and 72uC for 45 s, with a final extension at 72uC for 8 min.

The amplification of the RAG1 gene region involved a step-down

procedure [34]. The PCR products were sent to Macrogen Corp.

(Seoul, Korea) for sequencing using the forward primers in all

cases. Sequences were aligned in BioEdit Sequence Alignment

Editor v. 7.0.5.2 [35]. All sequences have been deposited in

EMBL-Bank (see Table S2 for all voucher information, with

corresponding EMBL-Bank accession numbers).

Genetic Analyses
We first analyzed the mitochondrial (16S vs. ND4) and nuclear

(RAG1 vs. KIAA2018) datasets separately to ensure that there was

no conflict in the markers within each genome, using a partition

homogeneity test [36,37] in PAUP* v4.0b10 [38]. The two

mitochondrial and the two nuclear genes were not incongruent, so

the partition homogeneity test was run again (nuclear vs.

mitochondrial) to ensure that there was no conflict between the

two genomes. Phylogenetic trees were constructed of the 1)

mitochondrial gene dataset (Fig. S1), 2) the nuclear gene dataset

(Fig. S1) and 3) the combined total evidence dataset (Fig. S2). The

saturation of the codon positions was assessed using the program

Dambe v.5.2.65 [39]. Even though the third codon position of the

ND4 gene was found to be saturated, it was not excluded from the

analyses, but rather it was coded as a separate partition. Two

individuals of Heliobolus lugubris were used as the outgroup, as it is

within the sister clade to the southern African radiation within

Eremiadini [33,40]. Sequence divergences were determined by

estimating the uncorrected p-distances between and within species

using the program MEGA v.4 [41].

Two different algorithms were utilized to obtain phylogenetic

trees (Figs. 1 and S1). Bayesian inference (BI) was performed using

the program MrBayes v.3.1.0 [42,43]. Priors in MrBayes were set

according to the evolutionary model which best fits the dataset

using the program MrModeltest v.3.6 [44], and uniform priors

were kept for all other parameters. The MCMC were run with 2

parallel runs for 10 million generations each, with trees sampled

every 1000 generations. The number of generations to discard as

burn-in was determined by examining the number of generations

1) at which the standard deviation of split frequencies stabilized (at

less than 0.001), 2) at which the log-likelihood tree scores reached

stationarity, and 3) the effective sample sizes (ESS) of all

parameters which were $600 (using the program Tracer v.1.5

[45]). A 50% majority rule tree was constructed with the burn-in

excluded using the ‘‘sumt’’ command in MrBayes, and nodes with

$0.95 posterior probability were considered supported. A

Shimodaira–Hasegawa (SH) test [46,47] was performed to

compare the consensus tree with a tree where I. squamulosa was

constrained to be closely related to Ichnotropis.

A partitioned maximum likelihood (ML) analysis was also run in

RAxML v.7.2.8 [48], at the CIPRES Science Gateway (www.

phylo.org/sub_sections/portal/) using the same partitions as the

Bayesian analysis, a GTR+I+G model of evolution, and automatic

halting of bootstrapping [48,49].

Characterization of Habitat
Two broad habitat types (open and cluttered) were defined for

our analysis based on the general characteristics of vegetation

structure associated with each species sampled. Open habitat lacks

vegetation completely (i.e. dunes) or is sparsely vegetated, and

mainly characterized by open sand, gravel or rock patches briefly

Convergent Evolution in Lacertid Lizards
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Figure 1. Phylogeny of the southern African lacertids. Phylogenetic reconstruction (left) using Bayesian inference (BI) of the southern African
radiation of the lacertid subfamily Eremiadini based on the combined partial 16S, ND4, RAG1 and KIAA gene regions and inferred by BI and maximum
likelihood (ML). Nodes with filled circles indicate BI posterior probabilities $0.95 and ML bootstrap values$75%. Representatives of the body shapes
for each general clade are included (right) to show differences in bauplan of the main genetic clades. Key to the color coding for genera and species
abbreviations: Australolacerta (red): AA=Australolacerta australis, AR =A. rupicola; Ichnotropis (gray): IB = Ichnotropis bivittata, IC = I. capensis, IS = I.
squamulosa; Meroles (orange): MA=Meroles anchietae, MCT=M. ctenodactylus, MCU=M. cuneirostris, MK=M. knoxii, MS=M. suborbitalis; Pedioplanis
(light blue): PB = Pedioplanis burchelli, PI = P. inornata, PLL = P. lineoocellata lineoocellata, PLP = P. l. pulchella, PN= P. namaquensis; Tropidosaura(blue):
TG= Tropidosaura gularis, TMM= T. montana montana, TMR= T. m. rangeri.
doi:10.1371/journal.pone.0051636.g001
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interspersed with bushes or grass tufts. A cluttered habitat is

densely vegetated (i.e. with low vegetation such as grasses, sedges

and restios, with an abundance of bushes in various sizes), with

intermittent open patches (Fig. S3).

Morphometric Analyses
Body length (snout-vent length; SVL) and biometric characters

on the head, hind limbs and fore limbs were measured externally

using digital calipers for each individual. Measurements on the

crania that related to the length of the head have seldom been

investigated in lizards in terms of habitat openness, however the

height and width of the crania have been linked to the use of

specific refuges in cluttered environments (e.g. crevices in rocky

habitats [8]). Measurements taken on the head were: head length

(HL) from snout-tip to the back of the parietal bone, head width

(HW) measured as the widest part of the head, head height (HH)

measured as the height from the top of the interparietal scale to

the bottom of the lower jaw (including muscles), lower-jaw length

(LJL), coronoid to snout-tip length (CT), and quadrate to snout-tip

length (QT). Limb measurements were taken of both the hind- and

fore-limbs, as cluttered habitats have been cited as a factor in limb

reduction [26,50], and longer limbs may be necessitated by an

open habitat for higher sprint speeds, in order to effectively escape

predators [17,25,26]. Measurements taken on the limbs were as

follows: the femur length (FM), tibia length (TB), humerus length

(HM) and radius length (RD). Other body dimensions measured

were body height (BH) and body width (BW). Accession numbers

for each individual and number of individuals measured for each

species is detailed in Table S2.

Hierarchical clustering of the species was performed in the

program R Studio v.0.94.84 [51], to identify morphological

clusters. The mean value per species (17 species) of each size-

regressed measurement (12 measurements) was calculated (pack-

age: ‘base’, function: ‘mean’ [50]) and the mean values per species

for each measurement were regressed onto the mean snout-vent

length (SVL) using a linear model to eliminate the effect of size

(package: ‘stats’, functions: ‘lm’ and ‘resid’ [52]). Hierarchical

clustering of the residual distances was performed (package:

‘pvclust’, function: ‘pvclust’ [53]) in which the distance matrix was

calculated using the ‘‘correlation’’ option, the clustering dendro-

gram was constructed using the ‘‘complete’’ option, and support

values for the nodes were estimated using 1000 bootstrap

replicates.

To examine trait differences among the morphological group-

ings obtained in the hierarchical clustering, a principal compo-

nents analyses (PCA) on the residuals was performed in the

program SPSS v.15 (SPSS, Inc.). Varimax rotation was used and

three principal components (PC) with eigenvectors greater than 1

were extracted, which accounted for ca. 74.45% of the total

variance (Table 1). The KMO test indicated sampling was

adequate (i.e. in excess of 0.5), all communalities were high (i.e. in

excess of 0.5) suggesting that all variables were reliable

contributors to the analysis, there were sizeable correlations

between all original variables, and low correlations in the residual

correlation matrix [54]. The three PC’s extracted (Table 1) loaded

highest with body and head width (PC1), head lengths (PC2), and

limbs (PC3). Boxplots (Figs. 2 & S4) were constructed using the PC

scores for these same groups (package: ‘stats’, function: ‘boxplot’

[51]). Analysis of variance (ANOVA) was carried out on the three

principal components extracted with the morphological cluster as

the fixed factor (package: ‘stats’, function: ‘anova’ [51]).

Results

The combined mitochondrial and the nuclear topologies (BI

and ML) were congruent (Figs. 1 and S1) and largely consistent

with previous work [33,40]. Our data however shows two notable

exceptions due to the inclusion of additional taxa (Ichnotropis spp.

and Australolacerta spp.), both of which suggest that factors

independent of ancestry are driving morphological evolution in

the Eremiadini. Firstly, the two species of Australolacerta are

separate evolutionary lineages, and form part of a deep basal

polytomy at the generic level (Figs. 1 & S1), despite the ecological

and morphological similarities that were used to place them in the

same genus (Fig. 2 [55]). Secondly, the phylogeny shows that

Ichnotropis squamulosa shares its most recent ancestry with members

of the genus Meroles (Figs. 1 & S1), rather than with species in the

morphologically similar genus Ichnotropis (Fig. 2), leading to

a misclassification at the generic level. There was a significant

difference between the Bayesian consensus tree and the tree where

I. squamulosa was constrained as part of Ichnotropis (SH test:

P,0.01). Sequence divergences also show that Ichnotropis squamulosa

is highly divergent from other Ichnotropis species examined (16S:

10.9662.27%, ND4:21.8062.62%, RAG1:5.0960.88%, KIAA:

3.3860.1%). In both cases, convergence in bauplan is coupled to

traits associated with body/head width and limb dimensions

(Fig. 2).

The phylogenetic analyses show that the two species, A. australis

and A. rupicola, are separate evolutionary lineages, and form a basal

polytomy with all other Eremiadini genera except Meroles. The SH

test was not performed with Australolacerta constrained as mono-

phyletic group, due to the unresolved relationship between the two

species. The sequence divergence between these lineages were

high (16S: 9.5562.08%; ND4:22.6961.60%;

RAG1:3.7460.76%; KIAA: 1.9060.47%), consistent with generic

divisions in southern African Lacertidae (16S: 7.5761.38%;

ND4:21.2161.33%; RAG1:4.0760.54%; KIAA: 2.8460.60%,

this study) as well as others (combined RAG1 & C-MOS: 1.40%

between Archaeolacerta and Zootoca, [33]). Due to the high sequence

divergences, we suggest that they have been incorrectly placed

together in a single genus due to their similar body plans.

The adaptive nature of convergence in Eremiadini is demon-

strated by the significant association of ecologically relevant traits

and habitat structure. Hierarchical clustering of morphological

features resulted in two major clusters that correspond to A)

cluttered and B) open habitats (Fig. 2). These morphological

clusters do not correspond to the evolutionary history of these

taxa, but instead are significantly different with respect to sets of

ecologically relevant characteristics related to habitat structure.

Each cluster was further subdivided into either three (Cluster A:

A1, A2 and A3) or two (Cluster B: B1 and B2) subclusters. Some of

the subclusters can be linked to particular microhabitats within

a cluttered or open habitat. For example, Cluster B2 species are

dune-dwelling, whilst species of Cluster A2 and A3 are rupicolous.

Multivariate analyses (principal components analysis and

analysis of variance) indicate that the two morphological clusters

differ significantly in terms of body/head slenderness (PC1:

F = 430.19, p,0.001, 50.74% of the variation; Table 1), with

species inhabiting cluttered habitats being slender and more

elongate compared to those in more open habitats (Figs. 1 & S5).

The two morphological clusters did not differ significantly for the

second principal component (PC2: F = 2.60, p = 0.11, 14.24% of

the variation) that loaded positively with most head measurements,

particularly lengths (Table 1). An exception is that dune-dwelling

species (B2) have significantly longer heads compared to clusters

B1 (F = 98.86, p,0.0001) and A2 (F = 24.73, p,0.0001) (Table 2).

Convergent Evolution in Lacertid Lizards
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The two clusters differed significantly for PC3 (F = 15.77,

p,0.001; 9.47% of the variation), however this may be due to

the relatively shorter forelimbs of Tropidosaura (A3).

Discussion

Whilst morphological characters are traditionally used to define

species, descriptions that incorporate multidisciplinary ap-

proaches, including morphological, genetic, behavioral and

ecological aspects, are typically better informed (e.g. [56]). Our

data shows that among the morphological similarities upon which

taxonomic classifications for Eremiadini are based [57], some are

the result of convergence due to habitat structure and not shared

ancestry. We show that convergent evolution of morphological

characters has led to genetically distant, but partially sympatric

(Ichnotropis spp.) and parapatric (Australolacerta spp.) species being

considered as sister taxa. Such examples of misclassification due to

phenotypic similarities between species are increasingly familiar,

suggesting that morphological adaptation in response to similar

environments is pervasive, rather than exceptional. Even what

might appear to be obvious cases of shared evolutionary history

based on morphology, have turned up surprising developments

revealing incorrect classifications at the generic level (e.g. geckos of

Figure 2. Clustering and principal components analysis of morphological markers. Boxplots of the first three principal component axes
(center) for each morphological group (A, B) retrieved by hierarchical clustering (shown right). Positive values of the PC axes indicate larger body
dimensions, whilst negative values indicate smaller body dimensions. Morphological groupings are shaded as follows: A1 = bright green, A2= lime
green, A3= green, B1 = blue, B2 = purple. The phylogenetic tree (left) is color coded by species according to its morphological group membership.
Morphological measurements are shown on lizard schematic, and line colors correspond to sets of original variables that loaded onto each PC (PC1=
red, PC2= yellow, PC3 = light blue). Percentage of variation contributed to each PC axis is given. Key to the species abbreviations as in Fig. 1.
doi:10.1371/journal.pone.0051636.g002
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the genera Pachydactylus/Elasmodactylus [58]; chameleons of the

genera Archaius/Rieppeleon [59]).

Convergence in phenotype can be the result of random

evolutionary change [1], however the observed morphological

convergence in the southern African lacertids suggests adaptation

to particular environments. The high genetic divergence between

morphologically and ecologically similar species suggests that

vegetation density (i.e. habitat clutter) is a major driving force in

the evolution of phenotypic diversity in these lizards, irrespective

of ancestry. Within the lacertid lizards, the phylogenetic position of

species inhabiting particular environments (i.e. xeric or mesic

environments) was investigated previously [33], and a unique

monophyletic trend from mesic to xeric species within the

Lacertidae could not be demonstrated, despite previous morpho-

logical phylogenies which showed this trend [57,60]. With the

comparison of the molecular tree to the broad environmental

categories, it was suggested that there are multiple origins of xeric-

adapted species within Eremiadini. However, here we show that

morphology of a lizard is likely to be driven by its microhabitat,

with less association to broad scale biome features. In fact, for

many reptiles, geographic proximity influences phylogenetic

position (e.g. [13,61]) making it unsurprising that a link exists

between broad scale environmental classifications and phyloge-

netic position. For example, within Meroles, M. anchietae and M.

cuneirostris are in the same clade, have a similar body plan and both

inhabit a xeric environment. However, the lack of phylogenetic

independence means that similarities due to a common ancestor

which inhabited the xeric region prior to diversification cannot be

ruled out. Conversely, M. reticulatus is not within the same clade as

M. anchietae and M. cuneirostris, but the bauplans of all three species

are similar suggesting a separate origin of this morphology due to

similarity in microhabitat (open habitat) within the xeric macro-

habitat.

Whilst the morphological clusters were significantly different

with respect to overall body slenderness (PC1) and linked to

habitat openness, the lack of a significant difference for PC2

(Table 1) indicates that head shape is driven by factors other than

habitat structure such as diet or sexual selection (e.g. [62,63]).

Convergence in head shape within the dune-dwelling species (B2)

may be as a result of their preference to sand-dive or to utilize

burrows, both of which are behavioral adaptations for predator

avoidance and thermoregulation [27,64]. The Ichnotropis (A1) head

dimensions are not significantly different from the dunes cluster

(B2) (F = 2.78, p = 0.10), and this could be due to a propensity for

digging burrows for shelter and reproduction [65], thereby

evolving the same relative head morphology [65]. Another

possibility is that Ichnotropis may have a similar diet to the sand-

dwelling species, which may be driving the similarity in head shape

[65].

In terms of limb lengths, the two morphological clusters were

significantly different (PC3), in particular because of the short

limbs in Tropidosaura. The shorter forelimbs in conjunction with

their slender bodies may allow Tropidosaura to optimize maneu-

vering performance while negotiating cluttered vegetation (e.g.

[17,27]), whereas the long limbs of the Ichnotropis spp. (A1) and

Table 1. Principal components analysis loadings of size-
regressed measurements.

Residuals PC1 PC2 PC3

Body width (BW) 0.89 0.07 0.03

Head width (HW) 0.79 0.32 0.27

Body height (BH) 0.77 0.14 20.02

Head height (HH) 0.60 0.53 0.21

Lower jaw length (LJL) 0.27 0.81 0.10

Quadrate-Tip length (QT) 0.29 0.78 0.29

Head length (HL) 0.40 0.76 0.23

Coronoid-Tip length (CT) 20.07 0.70 0.27

Radius length (RD) 0.02 0.23 0.88

Humerus length (HM) 0.02 0.21 0.87

Tibia length (TB) 0.52 0.27 0.66

Femur length (FM) 0.58 0.30 0.59

% variance 50.74 14.27 9.47

F-value 430.19 (***) 2.60 (ns) 15.77 (***)

Principal components analysis of size-regressed measurements, with loadings
of each measurement for the three axes that had eigenvalues .1.0.Characters
that loaded most strongly with each principal component are in bold. F-values
from the analysis of variance between two main morphological clusters are
shown. ***P,0.001; ns-not significant.
doi:10.1371/journal.pone.0051636.t001

Table 2. Analysis of variance (ANOVA) results for morphological clusters.

PC1 Df Sum-Sq Mean-Sq F-value P PC2 Df
Sum-
Sq

Mean-
Sq

F-
value P PC3 Df

Sum-
Sq

Mean-
Sq F-value P

A1 A2 1 0.67 0.67 1.54 0.22 A1 A2 1 37.50 37.50 56.04 ,0.001 A1 A2 1 28.32 28.32 34.28 ,0.001

A3 1 1.84 1.84 6.64 0.01 A3 1 10.92 10.92 17.71 ,0.001 A3 1 61.63 61.63 108.44 ,0.001

B1 1 63.95 63.95 147.48 ,0.001 B1 1 27.60 27.60 36.36 ,0.001 B1 1 6.91 6.91 7.09 0.01

B2 1 139.27 139.26 409.44 ,0.001 B2 1 1.90 1.90 2.78 0.10 B2 1 1.16 1.16 2.41 0.12

A2 A3 1 0.71 0.71 1.30 0.26 A2 A3 1 0.39 0.39 0.49 0.48 A2 A3 1 20.25 20.25 24.28 ,0.001

B1 1 89.80 89.80 181.98 ,0.001 B1 1 6.21 6.21 7.79 0.01 B1 1 17.64 17.64 17.15 ,0.001

B2 1 175.14 175.14 384.49 ,0.001 B2 1 73.35 73.35 97.15 ,0.001 B2 1 25.77 25.77 42.71 ,0.001

A3 B1 1 36.02 36.02 77.89 ,0.001 A3 B1 1 0.44 0.44 0.54 0.46 A3 B1 1 50.91 50.91 50.98 ,0.001

B2 1 73.60 73.60 197.33 ,0.001 B2 1 18.76 18.76 24.73 ,0.001 B2 1 58.64 58.64 156.77 ,0.001

B1 B2 1 44.42 44.42 100.31 ,0.001 B1 B2 1 77.69 77.69 98.86 ,0.001 B1 B2 1 3.45 3.45 4.07 ,0.001

Analysis of variance (ANOVA) results for morphological clusters (A1, A2, A3, B1 and B2; as in Fig. 2). Significant differences (P,0.05) are indicated in bold, italic font.
PC =principal component, Df = degrees of freedom, Sum-Sq = sum of squares value, Mean-Sq =mean sum of squares value, P = significance value.
doi:10.1371/journal.pone.0051636.t002

Convergent Evolution in Lacertid Lizards

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e51636



those inhabiting more open habitats (B1 and B2) should increase

sprint performance (e.g. [26,27,66–68]). Relative forelimb and

hindlimb dimensions, however, need to be investigated in

conjunction with substrate type and structure, as opposed to

habitat structure, in order to better understand the evolution of

limb dimensions in Eremiadini.

Although sub-sets of taxa from Meroles and Ichnotropis were

investigated as part of higher level lacertid phylogenies, the

placement of I. squamulosa within Meroles was not identified

previously due to the inclusion of only a single Ichnotropis (I.

squamulosa) and various Meroles (M. knoxii, M. suborbitalis or M.

ctenodactylus) in those analyses [33,40,69]. Despite their placement

in the phylogeny, I. capensis and I. squamulosa do not differ

significantly morphologically, and cluster together when body

dimensions, head measurements and limbs measurements are

investigated. Both of these species possess more slender bodies

relative to Meroles. In addition, they share characters not possessed

by Meroles (rough scales and the absence of a nuchal collar).

Because these two species have partially sympatric distributions,

their overlapping niche might explain the observed morphological

similarities. For example, limb dimensions could reflect adaptation

to substrate type, while head shape similarities could reflect

adaptation to similar diets. Although neither have a nuchal collar,

this is also absent in other Meroles (i.e. M. anchietae), as well as other

lacertids (e.g. Tropidosaura). Thus, the presence/absence of the

collar is unlikely to be a synapomorphy (Fig. S1). Similarly, the

presence of a gular fold (similar to a nuchal collar, but does not

extend all the way around the head) does not appear to be

a character than can be used to indicate shared ancestry (Fig. S1).

The other characteristic feature that has linked these species in the

past is the presence of rough (strongly keeled) scales. However, this

is also not a synapomorphy as other lizards and even lacertids (e.g.

Tropidosaura) are known to have rough scales suggesting shared

scale micro-ornamentation is not an indication of a shared

ancestry in lacertid lizards but rather related to microhabitat use

[70].

There are several interesting implications of the placement of I.

squamulosa within Meroles, rather than Ichnotropis. Sympatry often

leads to competition for resources particularly between closely

related species. Ichnotropis squamulosa is sympatric with I. capensis in

the northern regions of its distribution, but is allopatric with all

Meroles. Whilst Meroles are primarily sand-dwellers, Ichnotropis are

classified as terrestrial [71], with a propensity for sandy habitats in

mesic and arid savannah [65]. The reproductive cycles of I.

squamulosa and I. capensis are not concordant [65,72,73], which is

thought to prevent interspecific competition [72,73]. Both species

are considered to be annual breeders, although the breeding times

are staggered [73], and life-spans are unusually short for lacertid

lizards. Ichnotropis squamulosa lives approximately eight to nine

months, mating in late summer and hatchlings appear in spring

[65,73]. Ichnotropis capensis may live only marginally longer (13–14

months), mating in spring with hatchlings appearing in late

summer [65,73]. It has been suggested that this staggered

reproductive pattern arose to prevent interspecific competition

between closely related species [74]. However, because these

species are not closely related, this shared life-history trait cannot

be associated with a reduction of competition between sister taxa,

but rather suggests an independent evolution of a similar but

temporally disjunct reproductive strategy. The reasons for this are

not clear, particularly because I. squamulosa still exhibits the same

reproductive strategy in regions where the two species are not

sympatric (e.g. in Upington, South Africa [73]) suggesting that the

staggered reproduction of the two species is not driven by

interspecific competition.

Morphological adaptation to a particular microhabitat may

confer a greater fitness to individuals through their performance

(for a review see [75]).We show that habitat openness determines

the morphological shape of southern African lacertid species and

we expect that these differences in morphology will, in turn, be

associated to performance differences between the species. Those

species adapted to open dunes may be better sprinters than those

inhabiting cluttered rocky environments, whilst the rock-dwellers

may be better climbers than sand dwellers. A closer investigation

into associations between body and limb shape and performance

in southern African lizards is needed to understand the functional

implications of the morphological shape differences in southern

African lacertid lizards.

Supporting Information

Figure S1 Phylogenetic trees of the southern African radiation

of the lacertid subfamily Eremiainae based on the partial (A) 16S,

(B) ND4, (C) RAG1 and (D) KIAA gene regions and inferred by BI.

Sample numbers are indicated at terminal tips, and species names

are given (right). Posterior probabilities $0.95 are above the

nodes. Key to the species abbreviations: Australolacerta (red):

AA =Australolacerta australis, AR =A. rupicola; Ichnotropis (gray):

IB = Ichnotropis bivittata, IC = I. capensis, IS = I. squamulosa; Meroles

(orange): MA =Meroles anchietae, MCT =M. ctenodactylus,

MCU =M. cuneirostris, MK =M. knoxii, MS =M. suborbitalis;

Pedioplanis (light blue): PB = Pedioplanis burchelli, PI = P. inornata,

PLL =P. lineoocellata lineoocellata, PLP = P. l. pulchella, PN = P.

namaquensis; Tropidosaura (blue): TG =Tropidosaura gularis,

TMM =T. montana montana, TMR =T. m. rangeri.

(TIF)

Figure S2 Phylogenetic tree of the southern African radiation of

the lacertid subfamily Eremiainae based on the combined partial

16S, ND4, RAG1 and KIAA gene regions and inferred by BI and

ML (Bayesian topology shown). Sample numbers are indicated at

terminal tips, and species names are given. Posterior probabilities

$0.95 are above the nodes and bootstrap values $75% are below

nodes. Filled stars next to species names indicate presence of both

a gular fold and a nuchal collar in the species, open stars indicate

presence of nuchal collar only, filled circles indicate presence of

gular fold only.

(TIF)

Figure S3 Photographs of cluttered (A) and open habitat (B), as

examples of the two habitat categories defined for this study

(Photos by SE).

(TIF)

Figure S4 Hierarchical clustering of size-regressed morpholog-

ical measurements, with ‘‘approximately unbiased’’ support values

above the nodes. Support values $0.95 are considered supported.

For key to cluster abbreviations see Figure 2 and key to the species

abbreviations see Figure S2.

(TIF)

Figure S5 Scatterplots of the principal components analysis

(PCA) scores for the first and second (bottom), and first and third

(top) principal component axes. Colors of the symbols correspond

to the hierarchical clustering: green = A1, light green = A2, dark

green = A3, light blue = B1, dark blue = B2. Boxplots next to axes

show the mean and 95% confidence intervals of each morpho-

logical clusterfor each PC axis, and label abbreviations as in

Figure 2. Boxplots of PC1 below the scatterplots, PC2 are bottom-

left and PC3 are top-left. Divisions for the boxplots are indicated

by the color and at the axis.

(TIF)
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Table S1 List of specimens used in the phylogenetic analyses

with genus and species names, ID numbers, Museum accession ID

numbers and EMBL accession numbers for each gene.

(DOCX)

Table S2 List of specimens used in morphometric analyses,

genus and species names, ID numbers from either the Ditsong

museum (TM), Port Elizabeth Museum (PEM), or field trips.

(DOCX)
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