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Color polymorphisms are widespread in nature and may show a high variability not only within the same 
population, but also among populations of the same species., Color polymorphism is a common feature 
among reptiles and is often linked to evolution of alternative strategies. Alternative and discrete color 
morphs have been reported in the common wall lizard, Podarcis muralis, which show six different ventral 
colorations in both sexes: three pure phenotypes (i.e., white, yellow and red) and three intermediate phe-
notypes (i.e., white-yellow, white-red and yellow-red). The relative frequencies of color morphs show mi-
cro-geographic variations at local scale, which could be related to gene flow reduction among popula-
tions. Therefore, in this work I studied genetic polymorphism by using molecular markers in order to as-
sess gene flow and dispersal among populations of common wall lizard, with the aim to describe the geo-
graphic structure of polymorphic populations at local scale. Moreover, nuclear markers were used to in-
vestigate the presence of genetic divergence among sympatric color morphs of common wall lizard. 

1 Introduction 

1.1  Color polymorphism: evolution and maintenance 
Polymorphism is defined as the coexistence within the same population and in the same habitat of two or 
more distinct and genetically determined phenotypes (named morphs), the rarest of which being too 
frequent to be maintained only by recurrent mutations (i.e., true polymorphism; [1]). Color polymor-
phism occurs in many vertebrates taxa and is widespread among reptiles. In lizards, true color morphs 
often occur in well-discrete color phenotypes, which are genetically determined [2] and remain stable 
through the individual life [3,4]. The co-occurrence of discrete color morphs within the same population 
implies a balance between different strategies reaching alternative equilibria under the same environ-
mental and social conditions. Inter-population variability in morph frequency have been observed in 
many discrete-polymorphic lizards, such as Uta stansburiana and Urosaurus ornatus [3,5,6], in several 
Sceloporus species [7,8] and in Lacerta vivipara [9], even in the absence of geographical barriers or 
genetic segregation among individuals. 

Polymorphisms maintenance may rely on the degree of “population connectivity”, a concept 
based on the movement of individuals among discrete populations. Gene flow and dispersal among 
populations may therefore contribute significantly to polymorphism persistence [10]. For instance, in 
metapopulations discrete subpopulations exchange genes with one another through dispersal and favour 
deterministic processes of density- and frequency-dependent selection, generating more linkage disequi-
libria than expected in a panmictic population [11]. Local subdivision increases inbreeding, lowers effec-
tive recombination rate and increases levels of linkage disequilibria present in each deme [11, 12], en-
hancing the probability of chromosomal rearrangements that drive the evolution of super-genes responsi-
ble for morph-specific behavioural and mating strategies. Neutral processes such as drift and mutation 
may further contribute to the maintenance of spatial variation in morph-frequencies. 
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Another interesting observation concerns the evolution of sympatric alternative morphs, which 
often derive from multivariate disruptive natural selection favoured by non-random mating system with-
in the population. Polymorphic system which show positive correlation between color and morph-
specific suites of characters are expected to experience higher rates of genetic divergence either in re-
sponse to direct selection for assortative mating or as a consequence of phenotype spatial sorting at the 
time of mating or allochrony. Therefore, looking for deviations in the distribution of neutral genetic 
diversity would be of particular interest for testing hypotheses on mating system and life-history evolu-
tion of polymorphic species that invoke selection due to metapopulation dynamics [13,14,15,16]. 

 
1.2  Color polymorphism in the common wall lizard 

The common wall lizard (Podarcis muralis, Laurenti, 1768) is a small-sized lizard (snout-vent length, 
SVL, 45–75 mm) widespread in southern and central Europe. In northern Italy, populations exhibit a 
clear and remarkable polymorphism in throat and belly colorations, both sexes showing three pure phe-
notypes or morphs (i.e., white, yellow and red) and three apparently intermediate phenotypes (i.e., white-
yellow, white-red and yellow-red; Fig. 1). Throat and belly colorations start to develop from the second 
year of life, when individuals attain sexual maturity [17]; then the same color is maintained throughout 
the individual life [18,19], suggesting a strong genetic determination of this traits [19,20]. 

Recent image analyses of color variation has shown that only one color is expressed in pure 
morphs, and no continuous variation exists among these three alternative color phenotypes. Moreover, 
the two intermediate-red phenotypes appear clearly dichromatic (the two pure colors being both ex-
pressed on different scales of throat and belly or on the same scale at a time), while  white-yellow does 
not represent a real morph, but most likely an intermediate phenotypic phase to the yellow morph. 

 

Fig. 1 Ventral CP in the common wall lizard (top row: females, bottom row: males). From left to right: white, yel-
low, red, white-red, yellow-red, white-yellow. 
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Although these chromatic differences are remarkable, the adaptive significance of color poly-
morphism in common wall lizard is unclear. As already observed for several polymorphic lizards, colora-
tions may underlie alternative behavioral strategies, which can be also implicated in shaping species 
mating system [19]. At present, several morphological [20], immunological [21] and physiological [22] 
differences among color morphs have been identified thanks to both field and laboratory works. 

Morph frequencies seem similar in neighbouring populations, although a clear geographic cline 
is hardly recognizable [20]. Since the habitats between the investigated sites are likely unfavourable to 
individual dispersal, populations may represent local demes of a metapopulation. Connectivity among 
populations may therefore be lower than expected if populations are fully connected, leading to a local 
shift in morph frequency.. 

In the present study, I analysed the pattern of gene flow among northern Italian populations of 
common wall lizard, as a mechanism to maintain polymorphism, testing for the occurrence of limited 
gene flow among them, as expected in a metapopulation scenario. In addition, I also investigated the 
presence of genetic divergence among sympatric color morphs of common wall lizard with neutral mo-
lecular markers to test if population structuring parallels colorations, as expected if disruptive selection 
and non-random mating system occurs among morphs. 

2 Materials and methods 

2.1  Population survey and genetic sampling 
To describe geographic variation in frequencies of common wall lizard color morphs, during spring and 
summer 2009-2010 (i.e., along the reproductive season) 8 polymorphic populations of P. muralis were 
sampled in Lombardy (northern Italy). At small spatial scale, 5 populations were sampled within the city 
of Pavia (45°11’N–9°30’E, PV1-PV2) and in neighbouring farms (PV3, PV4, PV5), in the typical farm-
land landscape of the Po Plain. Average distance among these populations was 6 km (from 1.6 km be-
tween PV1 and PV2 to 12 Km between the easternmost farm PV3 and the westernmost farm PV5).  

To assess large-scale geographic variation in morph frequencies, 2 populations located in the 
surroundings of Milano (45°27’N–9°11’E) were also sampled within two natural protected areas (urban 
parks), 50 km apart from our main sampling area (MI1, MI2), as well as 1 mountain population up to 
580 m a.s.l. (LE) located 100 km apart from the city of Pavia, in the village of Lemna, near Como 
(45°51’N–9°9’E). At each site, 36 lizards were sampled on average. The ventral morph was assessed 
univocally by visual inspection (see Fig. 1 for the definition of color phenotypes). 

All individuals were measured for SVL to the nearest 0.1 mm, and a small (< 3 mm) piece of tail 
tissue was sampled for further gene flow and genetic population structure analyses. Tail tissues were 
preserved in 95% ethanol in the field and then storage in the laboratory at -20°C until DNA analyses. 
After sampling, all lizards were immediately released at capture point. 
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2.2  DNA extraction and sequencing 

Total genomic DNA was extracted for 288 adult lizards (156 males, 132 females) using the ArchivePure 
DNA Cell/Tissue kit (Eppendorf, Hamburg, Germany) according to the manufacturer’s instructions. The 
whole cytochrome b (cyt b) gene (1143 bp length) was amplified using previously described primer pair 
[23,24]. Polymerase chain reactions (PCRs) profile comprised an initial denaturation at 94°C for 2 min, 
followed by 35 cycles of denaturation (45 s at 94°C), annealing (45 s at 51°C) and elongation (90 s at 
72°C), and a final elongation step at 72°C for 10 min. All lizards were also genotyped for 7 microsatel-
lite loci available for the species [25]. Forward microsatellite primers were fluorescently labeled and 
amplifications were performed in a 10 μl reaction volume containing 1 μl of template DNA. PCR condi-
tions involved an initial denaturation step of 3 min at 95°C, followed by 30 cycles of 45 s denaturation at 
95°C, 30 s at locus-specific annealing temperatures [25], and 30 s extension at 72°C. After last cycle, a 
final extension was done at 72°C for 10 min. For fluorescent detection on an ABI 3130 sequencer, PCR 
products were mixed with formamide and an internal size standard (500(-250)LIZ, Applied Biosystem). 

 

2.3  Statistical analysis 
Mitochondrial DNA sequences were corrected by eye, then alignments were made using Clustal W [26] 
implemented in BioEdit 7.0 [27]. The software TCS 1.21 [28] was used to generate haplotype networks 
for populations as well as for color morphs. Concerning microsatellite data, observed and expected het-
erozygosities (HO and HE), as well as the number of private allele (AP), was calculated with GenAlex 6.4 
[29]. Allelic richness (AR), averaged over all loci and estimated for the minimum number of individual 
per morph class was calculated with FSTAT 2.9.3 [30]. Population differentiation was assessed by calcu-
lating pairwise multilocus estimates of FST [31] using Arlequin 3.11 [32]. For the sequence data, pairwise 
distance model was selected. The same software was used to test for correlations between genetic and 
geographic distance matrices with Mantel test. 

In three populations for which the largest number of samples were available  (PV2, N=36; PV3, 
N=45;  PV4 N=33) I also tested whether individuals were randomly sampled from a panmictic unit, 
checking for the presence of more than one putative reproductive group in each population according to 
color morph. A factorial correspondence analysis (FCA) was conducted with the software Genetix 4.05 
to determine the similarity of allelic composition among the color morph classes within the same popula-
tion. Differences in the FCA factors were then tested by a MANOVA using R 1.2.1. statistic package. 

3 Results 

3.1  Phylogeographic structure and gene flow among polymorphic populations  
Overall, 24 unique haplotypes were found in our dataset (Fig. 2). Haplotype PM1 was found in all the 
populations and in all the three morph types (Fig. 2). The 75% of the haplotypes identified were private 
of a single population, while 25% occurred in a single morph class. On average, two private haplotypes 
were found in all the surveyed populations (Fig. 2). Concerning individual morph, the majority of sam-
ples sharing the widespread PM1 haplotype was white (41%), while the yellow morph (31%) and the red 
(i.e., pure red) one (27%) were less represented. 

Reconstruction of the haplotype networks led to the identification of a single cluster at the 95% 
parsimony threshold. Networks showed a classical star-like phylogeographic structure, with one wide-
ranging ancestral haplotype and many weakly differentiated locally restricted haplotypes. Overall, the 
white morph seem to be less structured than the yellow and the red ones, as fewer derivates haplotypes 
has been found in white individuals of all the surveyed populations. 
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Fig. 2 Haplotype network reconstruction for northern Italian population of common wall lizard based on the whole 
cyt b sequences (1143 bp). The relative frequency of population sharing each haplotype is indicated with different 
color. 
 

All microsatellite loci were polymorphic across the 8 populations. Across all populations and 
sites 122 alleles were found, ranging from 10 to 21 (17.42 ± 0.39 on average). Allelic richness was simi-
lar among all the studied populations (ranging from 0.847 in PV5 to 0.873 in PV2). Private alleles were 
found in all the populations but PV1, the highest number (4) being found in the mountain population LE. 

Estimates of population differentiation with microsatellite markers were positive and signifi-
cantly different from zero, with an overall FST-value of 0.0250, indicating reduced gene flow among 
populations. All population comparisons were significant, ranging from 0.0159 to 0.0352 (Table 1). 
Genetic differentiation among populations based on the mitochondrial cyt b data ranged from -0.0213 to 
0.1529 (Tab. 1). Interesting enough, linear regression of FST/(1 - FST) on the logarithm of geographical 
distances showed a significant positive correlation between population differentiation and geographical 
distances (P < 0.001). 
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Table 1 Differentiation between populations of common wall lizard from northern Italy by pairwise FST for microsa-
tellite (lower diagonal) and cyt b sequences (upper diagonal). * P < 0.05; ** P < 0.01; *** P < 0.001. 
 

 PV1 PV2 PV3 PV4 PV5 MI1 MI2 LE 
PV1 - 0.0219 0.1099** 0.1412 0.0873 0.1529*** 0.1568** 0.1223** 
PV2 0.0194*** - 0.0431 0.0624 0.0137 0.0777 0.0927 0.0433 
PV3 0.0242*** 0.0163*** - 0.1066** 0.0688* 0.1200*** 0.1311** 0.1001** 
PV4 0.0220*** 0.0238*** 0.0301*** - 0.0644*** -0.0069 -0.0213 0.0537 
PV5 0.0253*** 0.0284*** 0.0287*** 0.0313*** - 0.0878 0.1486 -0.0057 
MI1 0.0217** 0.0230*** 0.0254*** 0.0352*** 0.0302*** - -0.0118 0.0835* 
MI2 0.0160** 0.0159** 0.0189** 0.0227*** 0.0240*** 0.0210** - 0.1404** 
LE 0.0166** 0.0273*** 0.0264*** 0.0315*** 0.0312*** 0.0271*** 0.0209** - 

 

3.2  Genetic divergence among color morph classes 
Factors generated by the FCA differed significantly among morphs only in the lowland Populations PV2 
(P = 0.017) and PV3 (P = 0.028). In both these populations, significant differences were found between 
all the three morph classes (P < 0.05). The non-significant values observed for the site PV4 may be due 
to smaller sample sizes of this population (N=33) compared to the other populations considered in the 
analysis. Although morph classes substantial overlapped one another, three well-distinguishable groups 
were graphically identified by the first two axis in all the sites considered (Fig. 3). 
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Fig. 3 Tridimensional graphics showing spatial relationships among individuals of alternative color 
morph classes for populations PV2 PV3 and PV4. Axis Triangles represent the barycentre of each sam-
ples (i.e., each of the three color morph classes considered). Finally, purple rings indicate white-red indi-
viduals, while orange rings signal yellow-red lizards. 

4 Conclusions 

The general aim of this study was to understand the possible mechanisms that maintain intra-specific 
color variation in natural populations of common wall lizard by using molecular markers. In particular, I 
focused my research on the analysis of gene flow and genetic structure of polymorphic populations, 
testing also for the presence of genetic differentiation among color morphs in sympatry. I found variation 
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in morph frequencies among populations and gene flow reduction among geographic populations of 
common wall lizard according to spatial distance. Both mitochondrial and microsatellite markers sug-
gested that local variation in morph frequencies may be strongly related to founder effect and asymmet-
rical gene flow among populations. 

Analysis with nuclear microsatellite markers confirmed the presence of significance differentia-
tion even among nearby populations located less than 2 km apart from each other (see Tab. 1). The ob-
served general increment of genetic divergence according to geographic distance (IBD) suggested lim-
ited gene flow among populations as expected in a classical metapopulation scenario, where individuals 
show low dispersal ability [33]. In fact, farms of Po Plain are highly suitable for the occurrence of very 
dense common wall lizard populations, offering many shelters (old and desert buildings), food resources 
and protection from predators, but habitats among farms, mainly consisting of intensive cereal crops 
(maize, wheat and rice), do not represent optimal corridors for lizard dispersal and settlement. [20] 

I also investigated if reduced gene flow and genetic divergence among color morphs of common 
wall lizard occur in sympatry by using highly polymorphic microsatellite loci. When alternative color 
morph coexist in a population, correlational selection favouring certain trait value combinations at the 
expense of others may result in modification of genomic architecture and may lead to divergence among 
color morphs in many morphological, physiological and behavioural (e.g., reproductive) traits [34]. In 
the three populations examined, significance genetic divergence at neutral loci was found to match ven-
tral color polymorphism in sympatry. These positive correlations can arise from a variety of mate choice 
processes, including a preference for phenotypically similar mates (as assumed in many sympatric speci-
ation models), but also a spatial sorting of phenotypes at the time of mating and allochrony [35]. In po-
lymorphic systems such as those observed in the common wall lizard, where morphs may represent co-
adapted complexes trait, disruptive selection can then be enhanced by concomitant assortative mating 
among morphs [36].  
In conclusion, our results emphasizes the benefit of multilocus approaches in a population genetics 
framework for study not only polymorphisms in the wild, but also to assess the role of gene flow, mating 
system and natural selection in shaping genetic structure of polymorphic populations. 
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