Updates to the ranges of *Psammodromus edwarsianus*, *P. hispanicus*, and *P. occidentalis* in the Iberian Peninsula based on citizen science and new genetic data

Paul Doniol-Valcroze^{1,*}, Philippe Geniez², and Pierre-André Crochet¹

The genus *Psammodromus* comprises six species of lacertid lizards: *P. microdactylus* (Boettger, 1881) and *P. blanci* (Lataste, 1880) are endemic to North Africa; *P. algirus* (Linnaeus, 1758) is found in North Africa, Iberia, and southern France; *P. edwarsianus* (Dugès, 1829) is found in Iberia and southern France; and *P. occidentalis* Fitze et al., 2012 and *P. hispanicus* Fitzinger, 1826 are only found in Iberia. Of these, *P. edwarsianus*, *P. hispanicus*, and *P. occidentalis* were only recently recognised as distinct species based on genetic, morphological, and ecological niche divergence data (Fitze et al., 2011, 2012).

Psammodromus edwarsianus had long been recognised as a valid subspecies of P. hispanicus and can easily be differentiated from the two other species by the presence of a supralabial scale that separates its subocular scale from the lip (vs. subocular reaches the lip in the other two species) and other differences in head shape and coloration. Its range has been broadly described (as a subspecies of P. hispanicus) to include southern France and the Spanish autonomous communities of Catalonia, Aragon, Valencia, and Murcia (Böhme, 1981), with its southernmost location in Granada Province, Andalusia, added by Fitze et al. (2011; see Faria et al., 2021). However, in spite of these general statements, the range of P. edwarsianus remains imperfectly known and, as far as we know, no

attempt has been made to properly map its distribution.

Psammodromus occidentalis and P. hispanicus are very similar morphologically with no diagnostic features separating the two (Fitze et al., 2011, 2012) and multivariate classification correctly identifies only around 80% of individuals (San-Jose et al., 2012). Safe field identification is thus impossible based on current knowledge, and genetic identification is currently needed to confirm new localities of these two species. Both species occur in the Spanish autonomous communities of Castilla-León, Castilla-La Mancha, Madrid, Extremadura, and Andalusia, in Navarra Province, as well as in Portugal (Böhme, 1981; Fitze, 2012a-c; Faria et al., 2021). Due to difficulties with their identification, very few specific localities have been confirmed for these two species (16 for P. occidentalis, 20 for P. hispanicus) and their ranges are poorly known as a consequence. It appears although that they are mostly parapatric, with P. occidentalis in the west of the range and P. hispanicus in the east (Fitze et al., 2011, 2012; Mendes et al., 2017; Molina et al., 2020; Faria et al., 2021; Fig. 1).

We here present an updated range map for these three species (Fig. 1), using data compiled from published localities confirmed using molecular data, images from iNaturalist.org and Observado.org, specimens held in the collection of the Biogéographie et Ecologie des Vertébrés team (BEV) in CEFE (Montpellier), and the photos in the photographic collection of Philippe Geniez (PG). Specimens in the BEV collection or photos in the PG collection (see individual codes in the Appendix) are available from the authors on request. Records based on photos or on specimens for which genetic data were not available were considered to be P. edwarsianus if they possessed a supralabial scale below the subocular scale. All other specimens were retained as a single P. occidentalis/hispanicus grouping. Photos that did not show this feature clearly were discarded. For P. edwarsianus, we only report Spanish localities here because its range in France is already well known (Geniez

¹ Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Univ Montpellier, Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France.

² Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE-PSL), Institut de Recherche pour le Développement (IRD), Biogéographie et Ecologie des Vertébrés, Montpellier, France.

^{*} Corresponding author. E-mail: pauldoniol-valcroze@orange.fr

^{© 2023} by Herpetology Notes. Open Access by CC BY-NC-ND 4.0.

Figure 1. Ranges of three *Psammodromus* species in the Iberian Peninsula. Symbols represent *P. edwarsianus* (black triangles = genetically confirmed, grey triangles = morphologically confirmed), *P. hispanicus* (red circles = genetically confirmed), *P. occidentalis* (green circles = genetically confirmed), and *P. occidentalis/hispanicus* (white circles = morphologically confirmed). The red star identifies the locality of the new genetically confirmed *P. hispanicus* population.

and Cheylan, 2012). All data used to produce the map are given in the Appendix. Note that many localities on iNaturalist, notably all localities for *P. occidentalis*, are given with imprecise locations (accuracy of 28 km) due to the policy of this database on threatened species (see https://www.inaturalist.org/pages/help#geoprivacy). At the scale of the Iberian Peninsula, this only minimally affects the map provided here.

We also present new localities for *P. hispanicus* based on three adult females collected near Carrascal del Rio, Segovia, Spain on 25 May 2016 (41.3647°N, 3.9028°W, WGS84; specimen BEV.14627 / tissue sample T11267) and 26 May 2016 (41.3530°N, 3.8896°W; specimens BEV.14628–29 / tissue samples T11268–69). The first specimen was collected in a grassy clearing between dry open forests and cultivated land. The other specimens were found in a dry, steppe-like habitat on uncultivated slopes of small limestone

hills. The head scalation of these individuals excluded *P. edwarsianus* but, since they were collected close to the known range limits of the two other species (Fig. 1), genetic data were needed to identify them. We therefore barcoded these individuals, assuming that mitochondrial DNA is species-diagnostic in these species, as suggested by previous results, although the lack of cyto-nuclear discordance near contact zones has not been verified (Fitze et al., 2011, 2012).

Total genomic DNA was extracted from tail tips using the Dneasy Blood and Tissue Kit (QIAGEN, Hilden, Germany) following recommended procedures. Negative extraction blanks were made by processing tubes without tissue in exactly the same way as tissue samples and were used in all PCR reactions to ensure a lack of contamination. As an 879 bp fragment of the *ND4* gene was already available for all *Psammodromus* species (Fitze et al., 2011, 2012), this locus was amplified for our samples using primers ND4F (TTACTTTACTTGGAGTTGCAC-CA) and ND4R (CACCTATGACTACCAAAAGCT-CATGTAGAAGC; Arèvalo et al., 1994). PCR reactions were conducted in 20 µl volumes with 2 µl of DNA, 10 µl of Taq Polymerase [1×] (REDExtract-N-Amp PCR ReadyMix, Sigma-Aldrich, Saint Louis, Missouri, USA), 0.5 μ l of each primer [10 μ M], and 7 μ l of purified water. Amplifications were performed using the following protocol: initiation of 5 min at 94°C; 40 cycles of 95°C for 30 s, 58°C for 1:30 min, 72°C for 1 min; and final elongation of 10 min at 72°C. To test the success of the PCR, 3 µl of PCR product was migrated on a 1% agarose gel for 30 min at 100 V and 80 mA. Successfully amplified DNA fragments were sequenced by Eurofins Genomics (Ebersberg, Germany) using the same primers as for amplification. Sequences have been deposited in GenBank under accession numbers OM974543, OM974544, and OM974545 for specimens BEV.14627, BEV.14628, and BEV.14629, respectively.

The *ND4* sequences from the three samples were compared to reference samples of *P. microdactylus* (MF684964–66), *P. blanci* (MF684968–70), *P. algirus* (FJ587983–85), *P. edwarsianus* (FJ587814–16), *P. occidentalis* (FJ587833–35), and *P. hispanicus* (FJ587823–24, FJ587826). A phylogenetic tree was constructed from the alignment of *ND4* sequences using the Maximum Likelihood algorithm implemented in Mega-X (Kumar et al., 2018) with 1000 bootstraps and the HKY+G substitution model, which was selected as the best-fitting substitution model using defaults settings implemented in Mega-X.

The three individuals from Carrascal del Rio were identified as P. hispanicus (Fig. 2) and constitute a new locality for this species (Fig. 1). The two localities are 1.7 km distant (by air) from each other, 85 km and 200 km from the two closest P. hispanicus localities at El Espinar and Andosilla, and 103 km and 202 km from the closest P. occidentalis localities at Colmenar del Arrovo and Monte León (Fitze et al., 2011, 2012). They constitute the first indication of the occurrence of the species in the plateau of Castilla-Léon north of the Sistema Central mountains. At the northern edge of these plateaux, P. occidentalis has been identified just north of Léon (Fitze et al., 2011, 2012), indicating that these two species must meet somewhere on the northern plateau of Castilla-Léon. The large geographic distance between known P. hispanicus and P. occidentalis localities illustrates the incomplete knowledge of these species and the need to find and publish new confirmed localities. Genetic identification is currently

the only reliable method to confirm such records, but morphological criteria to separate *P. hispanicus* and *P. occidentalis* should be investigated to assist in determining the exact ranges of these two species.

Our study also helps refine the range limits for P. edwarsianus and P. hispanicus. Under the assumption that P. occidentalis and P. hispanicus are entirely parapatric, the range of P. edwarsianus only comes close to that of P. hispanicus (Fig. 1). Most of our additional, morphology-based localities fall inside the distribution polygons of previous genetic samples, which suggests that populations of the P. hispanicus complex are scarce or absent in many areas where information on species identity is currently lacking. In the Ebro depression, a photo of P. hispanicus/occidentalis from Zaragoza (iNat/80749918; Appendix) considerably reduces the gap between P. edwarsianus and P. hispanicus and may indicate the existence of a potential contact zone which could be studied to evaluate the presence and extent of gene flow between P. edwarsianus and P. hispanicus. Further dedicated fieldwork in the areas between mapped localities (Fig. 1) is necessary to refine the western range limit of P. edwarsianus and the eastern range limit of *P. hispanicus*, which can be established by simple visual examination of the specimens.

References

- Arèvalo, E., Davis, S.K., Sites, J.W., Jr (1994): Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the *Sceloporus grammicus* complex (Phrynosomatidae) in central Mexico. Systematic Biology 43: 387–418.
- Böhme, W. (1981): Handbuch der Reptilien und Amphibien Europas, Band 1: Echsen (Sauria) I. Wiesbaden, Germany, Akademische Verlagsgesellschaft.
- Faria, J.F., Carretero, M.A., Harris, D.J. (2021): Further molecular assessment of the distribution of Spanish sand racers (Lacertidae; *Psammodromus*). Basic and Applied Herpetology 35: 77–83.
- Fitze, P.S. (2012a): Lagartija occidental ibérica *Psammodromus occidentalis*. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A., Eds., Museo Nacional de Ciencias Naturales, Madrid. Available at http://www.vertebradosibericos.org. Accessed on 9 March 2022.
- Fitze, P.S. (2012b): Lagartija cenicienta *Psammodromus hispanicus*. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A., Eds., Museo Nacional de Ciencias Naturales, Madrid. Available at http://www.vertebradosibericos.org. Accessed on 9 March 2022.

Figure 2. Maximum-likelihood tree inferred from an 879 bp fragment of the ND4 gene. The three new samples are labelled in red.

- Fitze, P.S. (2012c): Lagartija de Edwards Psammodromus edwardsianus. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A., Eds., Museo Nacional de Ciencias Naturales, Madrid. Available at http://www. vertebradosibericos.org. Accessed on 9 March 2022.
- Fitze, P.S., Gonzalez-Jimena, V., San-José, L.M., San Mauro, D., Aragón, P., Suarez, T., Zardoya, R. (2011): Integrative analyses of speciation and divergence in *Psammodromus hispanicus* (Squamata: Lacertidae). BMC Evolutionary Biology **11**: 1–22.
- Fitze, P.S., González-Jimena, V., San-José, L.M., San Mauro, D., Zardoya, R. (2012): A new species of sand racer, *Psammodromus* (Squamata: Lacertidae), from the Western Iberian Peninsula. Zootaxa **3205**: 41–52.
- Geniez, P., Cheylan, M. (2012): *Psammodromus edwarsianus* (Dugès, 1829). Psammodrome d'Edwards. In: Atlas des Amphibiens et Reptiles de France, p. 192–193. Lescure, J., de Massary, J.-C., Eds., Paris, France, Publications Scientifiques du Muséum.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018): MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547.
- Mendes, J., Harris, D.J., Carranza, S., Salvi, D. (2017): Biogeographical crossroad across the Pillars of Hercules:

evolutionary history of *Psammodromus* lizards in space and time. Journal of Biogeography **44**: 2877–2890.

Molina, C., Tamar, K., González de la Vega, J.P., Burriel-Carranza, B., Fernández-Guiberteau, D., Carranza, S. (2020). New records on the distribution of the Spanish sand racer species (Squamata, *Psammodromus*) in Spain, Iberian Peninsula. Basic and Applied Herpetology **34**: 59–66. **Appendix.** Records used to map the distribution of the *Psammodromus hispanicus* complex (Fig. 1). In the Source column, references are abbreviated as follows: Fitze et al. = Fitze et al. (2011, 2012); Mendes et al. = Mendes et al. (2017); Molina et al. = Molina et al. (2020); Faria et al. = Faria et al. (2021); iNat/0000000 = iNaturalist.org, with each record available online by replacing the eight zeros with the numeric code in the link https://www.inaturalist. org/observations/00000000; Obs/00000000 = Observation.org, with each record available online by replacing the nine zeros with the numeric code in the link https://www.observation.org/observations/000000000. BEV numbers are voucher specimens in the BEV collection and PG numbers refer to photographs in the collection of Philippe Geniez. Other abbreviations are used for genetic data (G), morphological data (M), Spain (ES), and Portugal (PT). Records for which accuracy information is unavailable are indicated by a black circle (•).

Source	ID type	Country	Latitude (°N)	Longitude (°W)	Accuracy	Source	ID type	Country	Latitude (°N)	Longitude (°W)	Accuracy		
Psammodromus edwarsianus						Psammodromus hispanicus (cont.)							
Faria et al.	G	ES	39.9854	1.6287	•	Faria et al.	G	ES	38.2933	2.5912			
Faria et al.	G	ES	38.7648	0.9825	•	Faria et al.	G	ES	38.5362	2.4168			
Molina et al.	G	ES	38.9294	0.3471	•	Faria et al.	G	ES	37.9133	3.0032			
Mendes et al.	G	ES	41.29	2.1	•	Psammodromus hispanicus/occidentalis							
Mendes et al.	G	ES	38.02	0.70	•	PGe.3176	М	ES	40.4974	6.4953	500 m		
Fitze et al.	G	ES	41.4011	0.7185		PGe.3177	М	РТ	40.6052	7.023	500 m		
Fitze et al.	G	ES	41.2867	2.09893		PGe.3178	М	РТ	38.528	8,945	1000 m		
Fitze et al.	G	ES	41.9949	3,20075		PGe.3179	М	PT	37,4426	8,7941	500 m		
Fitze et al.	G	ES	40.0254	2.0431		PGe.3180	М	ES	37.1239	6,7976	500 m		
Fitze et al.	G	ES	39.3326	0.3053		PGe.3188	М	ES	37.0474	6.5665	25 m		
Fitze et al.	G	ES	37.5291	2.6882		PGe.3181	М	ES	37.921	6.484	5000 m		
Fitze et al.	G	ES	37.0194	3.6818		PGe.3182	м	ES	37.1064	6.7003	2000 m		
Fitze et al	G	ES	36 9124	3 4682		PGe 3183	м	ES	41 6207	3 7219	1000 m		
Fitze et al.	G	ES	36.6857	2.7674		PGe.3184	м	ES	41.3563	3.8400	250 m		
BEV 14060	M	ES	40 1386	2 0718	50 m	PGe 3185	м	ES	41 3563	3 8400	250 m		
BEV 15339	м	FS	38 497	0.3706	50 m	iNat/1631030	м	PT	37 3558	7 5186	28 km		
BEV 1790	м	FS	40 2398	2 0287	100 m	iNat/14663617	м	FS	39 7266	6 9102	10 m		
iNat/60/8301	M	ES	40.2570	1 2500	50 m	iNat/5417896	M	ES	12 5382	5 7113	28 km		
iNat/21701145	M	ES	41.5047	0.72434	50 m	iNat/14828303	M	PT	30 4730	8 8267	20 km		
iNat/21643654	M	ES	38 0204	0.72434	50 m	iNat/14792409	M	PT	39.4730	8 8625	28 km		
iNat/42766810	M	ES	37 7222	2 1600	50 m	iNat/15110133	M	FS	12 5565	5 1286	20 km		
iNat/60575804	M	ES	40.2077	2.1000	50 m	iNat/14220104	M	DT	42.5505	9.9152	20 Kill 28 km		
iNat/095/5894	M	ES	40.3077	1.2411	50	iNat/14829104	M	F I DT	20 5429	0.0132	20 Kill		
iNat/04455550	M	ES	40.3077	0.2077	50 m	iNat/14828433	M	PI	39.3428	8.8347	28 km		
1Nat/75596142	M	ES EC	39.3337	0.3077	50 m	iNal/16233979	M	PI	40.3926	7.1087	28 Km		
iNat//9005962	M	ES	37.6056	0.7391	50 m	iNat/16229208	M	PI	40.2905	7.1254	28 km		
Obs/2126/3112	M	ES EC	38.2304	0.5280	50 m	1Nat/154/1016	M	PI	37.2130	8.9422	28 Km		
Obs/212/04233	M	ES EC	38.3310	0.6922	50 m	iNal/134/0313	M	PI	39.7374	7.2505	28 Km		
1Nat/82000608	м	ES	37.7896	2.0017	50 m	1Nat/1/34/943	M	PI	40.2056	7.1543	28 km		
1Nat/68600826	м	ES	37.9453	1.2584	50 m	1Nat/16628166	M	PI	40.3841	7.0442	28 Km		
PGe.3186	M	ES EC	37.3080	5.15/5	500 m	1Nat/16393479	M	PI	40.5292	7.0484	28 Km		
PGe.318/	. M	ES	38.0579	1.5458	500 m	1Nat/21118662	M	PI	38.7723	9.2969	28 km		
Psammoaromus nispa	nicus	FO	41.2647	2 0020	00	1Nat/203462/3	M	PI	38./966	5.3367	10 m		
BEV.14627	G	ES	41.364/	3.9028	80 m	1Nat/1/652585	M	PI	37.1804	8.8204	28 km		
BEV.14628	G	ES	41.3530	3.8896	200 m	iNat/25/02108	M	ES	42.4923	6.9141	10 m		
BEV.14629	G	ES	41.3530	3.8896	200 m	iNat/3/534609	M	ES	41.8646	6.4183	10 m		
Fitze et al.	G	ES	42.3944	1.9225	•	1Nat/30413660	M	ES	38.7578	5.5162	10 m		
Fitze et al.	G	ES	40.7052	4.4047	•	iNat/295/1548	M	ES	37.0427	6.4344	10 m		
Fitze et al.	G	ES	40.2478	3.3669	•	iNat/42/01021	M	ES	40.5490	6.7515	10 m		
Fitze et al.	G	ES	39.4388	3.1438	•	1Nat/42/01021	M	PT	39.5536	7.6091	28 km		
Fitze et al.	G	ES	38.4876	2.4002	•	1Nat/40903190	М	PT	38.6557	9.1642	28 km		
Mendes et al.	G	ES	38.36	2.51	•	1Nat/40876657	М	PT	37.7039	8.3054	28 km		
Mendes et al.	G	ES	38.34	2.61	•	1Nat/40037027	М	PT	38.7844	9.1676	28 km		
Mendes et al.	G	ES	38.29	2.59	•	1Nat/43321230	M	ES	37.0427	6.4344	56 km		
Molina et al.	G	ES	36.9070	4.8167	•	1Nat/46418190	М	PT	38.7504	9.1151	28 km		
Molina et al.	G	ES	37.3247	3.4819	•	1Nat/46647160	М	PT	38.6115	9.1369	28 km		
Molina et al.	G	ES	36.8395	5.1379	•	1Nat/46766272	М	PT	38.7832	9.1413	28 km		
Molina et al.	G	ES	36.0868	5.5620	•	iNat/46887375	М	PT	38.6873	9.1400	28 km		
Molina et al.	G	ES	36.7842	6.1819	•	iNat/47284450	М	PT	38.6733	9.1763	28 km		
Molina et al.	G	ES	36.5290	5.5862	•	iNat/47387517	M	PT	38.7909	9.1062	28 km		
Molina et al.	G	ES	38.5217	2.3467	•	iNat/61707512	М	PT	38.9701	8.0187	28 km		
Faria et al.	G	ES	38.3593	2.5097	•	iNat/59271509	М	PT	40.7005	7.1581	28 km		
Faria et al.	G	ES	38.3372	2.6071	•	iNat/59058424	М	PT	37.1936	8.9313	28 km		

_

Appendix (cont.)

Source	ID type	Country	Latitude (°N)	Longitude (°W)	Accuracy	Source	ID type	Country	Latitude (°N)	Longitude (°W)	Accuracy
Psammodromus hisp	nicus/occia	lentalis (con	t.)		Psammodromus hispanicus/occidentalis (cont.)						
iNat/57583624	М	PT	40.3447	8.5918	28 km	iNat/104544420	М	PT	39.4475	9.1748	28 km
iNat/49986316	М	PT	38.6047	9.0165	28 km	iNat/104479131	М	PT	39.4266	9.1781	28 km
iNat/48820289	М	PT	37.0799	8.8284	28 km	iNat/104402817	М	PT	37.2497	8.9153	28 km
iNat/70341370	М	PT	38.7122	9.0520	28 km	iNat/99815911	М	РТ	39.4320	9.1859	28 km
iNat/65493447	М	ES	40.0662	5.6700	10 m	Obs/210069056	М	ES	42.4773	6.8800	10 m
iNat/65381828	М	PT	38.7354	9.1834	28 km	Obs/209333286	М	ES	39.4478	6.5689	10 m
iNat/64812495	М	ES	40.4783	5.1725	10 m	Obs/228007328	М	PT	37.0012	8.9478	10 m
iNat/63955434	М	PT	38.6760	9.1153	28 km	Obs/225931703	М	ES	37.9816	6.5196	10 m
iNat/72023588	М	PT	37.0499	8.8894	28 km	iNat/72363899	М	ES	36.7244	5.3292	10 m
iNat/71966252	М	PT	38.5142	9.0808	28 km	iNat/14288196	М	ES	38.8083	2.3716	10 m
iNat/71610643	М	PT	37.6409	8.2153	28 km	iNat/10529690	М	ES	36.8176	4.3855	10 m
iNat/71422948	М	РТ	38,7306	9.0521	28 km	iNat/9439973	М	ES	36.4609	5.4444	10 m
iNat/70455709	м	РТ	38.4467	9.1808	28 km	iNat/9439972	М	ES	36.4610	5.4449	10 m
iNat/70455614	м	PT	38 5958	9 1087	28 km	iNat/9439971	М	ES	36.4608	5.4447	10 m
iNat/70403536	M	PT	38.5210	9.0623	28 km	iNat/72349609	М	ES	40.4253	3.5881	10 m
iNat/73436041	м	PT	38 5083	9 1617	28 km	iNat/72056529	М	ES	40.3864	3.5984	10 m
iNat/73635252	M	ES	42 2337	5 4988	10 m	iNat/72056528	М	ES	40.3862	3.5996	10 m
iNat/74686237	M	PT	38.0123	8 6310	28 km	iNat/71899533	М	ES	36.7428	4.8647	10 m
iNat/72225250	M	PT	38 5703	9 1160	20 km	iNat/70956118	М	ES	37.4440	4.6001	10 m
iNat/72205801	M	PT	38 5275	9.0110	20 km	iNat/80214970	М	ES	40.4634	3.5362	10 m
iNat/72187527	M	FS	39 5713	5 9499	6500 m	iNat/79631006	М	ES	40.5992	3.6740	28 km
iNat/72184810	M	FS	40 4971	6 8012	1800 m	iNat/77740887	М	ES	40.5464	3.6860	10 m
iNat/79460210	M	PT	37 7040	8 1866	28 km	iNat/73908304	М	ES	40.4385	3.5781	10 m
iNat/8/15930/	M	PT	37 1521	8 4076	20 km	iNat/73375028	М	ES	36.7934	4.4942	10 m
iNat/78720592	M	PT	10 1068	6 8020	1500 m	iNat/72402619	М	ES	40.4360	3.5722	10 m
Nat/78718087	M	EC	40.4070	6 2012	2200 m	iNat/99135600	М	ES	41.7149	4.2621	15 km
iNat/78706306	M	ES	40.4970	6 8003	1900 m	iNat/81341382	М	ES	37.3062	3.4637	10 m
iNat/74861206	M	DT	28 7007	0.3005	28 km	iNat/103357559	М	ES	36.0602	5.5490	10 m
iNat/00867782	M	PT	20.2604	9.2035	20 KIII 28 Irma	iNat/80749918	М	ES	41.6079	0.9970	10 m
iNat/90807783	M	F I DT	27.0124	9.2309	20 KIII	Obs/208670692	М	ES	37.777	4.5705	10 m
iNat/90321322	M	PI	37.0124	8.8289	28 km	Obs/211060799	М	ES	37.7653	4.6068	10 m
iNat/90197255	M	PI	37.0803	8./340 5.4777	28 Km	BEV.7409	М	ES	37.7879	3.035	50 m
iNat/87900000	M	P1 EC	38.7700	5.4///	52 Km	Psammodromus occia	lentalis				
iNat/8/093002	M	E5 DT	37.0430	0.4544	20 km	Fitze et al.	G	ES	42.0130	7.4491	
11Nal/99814920	M	PI	39.4247	9.0037	28 Km	Fitze et al.	G	ES	41.9953	7,4303	
1Nat/99807718	M	PI	39.5788	9.0264	28 Km	Fitze et al.	G	ES	42.6735	5,5885	
1Nat/98544720	M	PT	37.1521	8.9895	28 km	Fitze et al.	G	ES	40.4561	4.1745	•
1Nat/9/1658/1	M	PT	39.3645	7.4386	28 km	Fitze et al.	G	ES	39,5503	5,9543	
1Nat/94332/48	M	PI	39.5117	5.8844	10 m	Fitze et al.	G	ES	37,7587	7.0786	
1Nat/90868386	M	PT	39.5260	9.0591	28 km	Fitze et al.	G	ES	37.0826	6.6447	
1Nat/90868209	М	PT	39.5010	9.1512	28 km	Fitze et al.	G	ES	37.0202	6.5374	•
1Nat/90868018	М	PT	39.4408	9.1738	28 km	Mendes et al	G	PT	39.43	7 58	
iNat/100614632	М	ES	42.2343	5.4982	31 m	Mendes et al.	G	PT	41.4	6.37	
iNat/100614633	М	ES	42.2340	5.4988	31 m	Mendes et al.	G	ES	40.43	4.18	
1Nat/101413852	М	PT	37.4539	8.0705	28 km	Mendes et al.	G	ES	38,4039	4.4354	
iNat/99814930	М	PT	39.4196	9.1850	28 km	Molina et al.	G	ES	37,9569	6.1598	
iNat/99814929	М	PT	39.4953	9.1826	28 km	Faria et al.	G	ES	38.2270	6.483	
iNat/99814928	М	PT	39.5729	9.1503	28 km	Faria et al.	G	PT	38.4718	9.1708	
iNat/99814927	М	PT	39.5267	9.0334	28 km	Faria et al.	G	ES	37.0478	6.5673	•