ZOOTAXA

Revising the taxonomy of Darevskia valentini (Boettger, 1892) and Darevskia rudis (Bedriaga, 1886) (Squamata, Lacertidae): a Morpho-Phylogenetic integrated study in a complex Anatolian scenario

OSCAR ARRIBAS ${ }^{1}$, KAMİL CANDAN ${ }^{2,3, *}$, PANAGIOTIS KORNILIOS ${ }^{4}$, DİNÇER AYAZ ${ }^{5}$, YUSUF KUMLUTAȘ ${ }^{2,3}$, SERKAN GÜL ${ }^{6}$, CAN YILMAZ ${ }^{7}$, ELİF YILDIRIM CAYNAK ${ }^{2,3}$ \& ÇETİN ILGAZ ${ }^{2,3}$ ${ }^{1}$ IES Castilla. Junta de Castilla y León, 42003 Soria, Spain.
© https://orcid.org/0000-0003-4613-5237
${ }^{2}$ Faculty of Science, Department of Biology, Dokuz Eylül University, Buca, İzmir, Turkey.
${ }^{3}$ Fauna and Flora Research and Application Center, Dokuz Eylül University, Buca, İzmir, Turkey.
© https://orcid.org/0000-0001-9614-5754
© https://orcid.org/0000-0001-7862-9106
© https://orcid.org/0000-0003-1154-6757
${ }^{4}$ Department of Biology, University of Patras, Patras, Greece. © https://orcid.org/0000-0002-1472-9615
${ }^{5}$ Faculty of Science, Department of Biology, Ege University, Bornova, İzmir, Turkey. © https://orcid.org/0000-0002-2667-8106
${ }^{6}$ Faculty of Science and Arts, Department of Biology, Recep Tayyip Erdoğan University, Rize, Turkey. © https://orcid.org/0000-0002-0372-7462
${ }^{7}$ Vocational School of Health Services, Hakkari University, Hakkari, Turkey. © https://orcid.org/0000-0002-5994-508X
Corresponding author: ${ }^{}$ * kamil.candan@deu.edu.tr; © https://orcid.org/0000-0002-6934-3971

Magnolia Press
Auckland, New Zealand

OSCAR ARRIBAS, KAMİL CANDAN, PANAGIOTIS KORNILIOS, DİNÇER AYAZ, YUSUF KUMLUTAŞ, SERKAN GÜL, CAN YILMAZ, ELİF YILDIRIM CAYNAK \& ÇETİN ILGAZ
Revising the taxonomy of Darevskia valentini (Boettger, 1892) and Darevskia rudis (Bedriaga, 1886) (Squamata, Lacertidae): a Morpho-Phylogenetic integrated study in a complex Anatolian scenario (Zootaxa 5224)

68 pp.; 30 cm .
28 Dec. 2022
ISBN 978-1-77688-660-9 (paperback)
ISBN 978-1-77688-661-6 (Online edition)

FIRST PUBLISHED IN 2022 BY
Magnolia Press
P.O. Box 41-383

Auckland 1041
New Zealand
e-mail: magnolia@mapress.com
https://www.mapress.com/zt
(C) 2022 Magnolia Press

All rights reserved.
No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
ISSN 1175-5326 (Print edition)

ISSN 1175-5334 (Online edition)

Table of Contents

Abstract 3
INTRODUCTION 4
MATERIAL AND METHODS 5
External morphology and osteology 5
Statistical procedures 6
Osteological examinations 6
Molecular phylogenetic examinations 7
Laboratory procedure, datasets, phylogenetic reconstructions 7
Single-locus species delimitation and multilocus coalescent-based species tree 7
Haplotype diversity and networks 8
RESULTS 8
Morphology 8
Canonical discriminant analysis (MALES) 8
ANOSIM (MALES) 11
Canonical discriminant analysis (FEMALES) 11
ANOSIM (FEMALES) 14
ANOVA. 14
Size and keeling of crus area scales 15
Osteology 16
Molecular analyses 17
Mitochondrial phylogenetic trees 17
Species delimitation approaches 19
Haplotype networks and genetic distances 19
Taxonomic implications 19
Darevskia josefschmidtleri sp. nov. 19
Darevskia spitzenbergerae (Eiselt, Darevsky \& Schmidtler, 1992) stat. nov. 23
Darevskia spitzenbergerae wernermayeri ssp. nov. 24
Darevskia mirabilis Arribas, Ilgaz, Kumlutaş, Durmuş, Avcı \& Üzüm, 2013. stat. nov. 25
DISCUSSION 25
Phylogenetic reconstruction 25
Morphology derived structure. 26
Concordance of genetic and morphological results 28
CONCLUSION 28
ACKNOWLEDGEMENTS 29
CONFLICT OF INTEREST 29
ETHICS. 29
REFERENCES 30

Abstract

Revealing biodiversity allows the accurate determination of the underlying causes of many biological processes such as speciation and hybridization. These processes contain many complex patterns, especially in areas with high species diversity. As two of the prominent zoogeographic areas, Anatolia and Caucasus are also home to the genus Darevskia, which has a complex morphological structure and parthenogenetic speciation. Darevskia valentini and D. rudis are two largely distributed taxa of this genus, both of which have a controversial taxonomic delimitation. Here we performed both a highly detailed morphological comparison and a molecular evaluation for the populations in both species groups. The most comprehensive taxonomic revision of this complex was carried out to determine the cases where the data obtained were compatible or not with each approach. As a result of the obtained outputs, it seems that D. spitzenbergerae stat. nov., D. mirabilis stat. nov. and D. obscura stat. nov. should be accepted as the species level, this later with subspecies D. o. bischoffi comb. nov. and D. o. macromaculata comb. nov.. Also, we propose two new taxa: D. josefschmidtleri sp. nov. and D. spitzenbergerae wernermayeri ssp. nov.. It has also been shown that "lantzicyreni" subspecies belong to D. rudis instead of D. valentini. The extensive revision has contributed to subsequent studies to more accurately understand the past histories of species in the genus Darevskia.

Key words: Darevskia, morphology, phylogeny, taxonomy, Anatolia, Caucasus

INTRODUCTION

Spatial isolation has been accepted as one of the most important steps of speciation since it was first defined (Darwin 1859; Mayr 1982). It is known that both genetic and ecological separation which arises with spatial isolation triggers speciation by causing reproductive isolation (Prohl et al. 2010). It is a common phenomenon in nature that species can adapt to environmental conditions in this way by occupying different environments and adopting different ecological niches (Dobzhansky 1937). In addition to this, some other processes like hybridization also can play a key role in the emergence of species (Tarkhnishvili et al. 2013). Anatolia, located between temperate and subtropical regions with mountainous range systems which create a wide variety of climates, ecosystems, and habitats, provides suitable conditions for the prominent speciation processes such as spatial isolation and adaptation (Şekercioğlu et al. 2011). Additionally, it has hybrid zones between closely related amphibian and reptile species, which contributes to understanding the different causes underlying species diversity (Dufresnes et al. 2019; Tarkhnishvili et al. 2020a; Karakasi et al. 2021). Thanks to this unique feature, it harbors numerous members of herpetofauna (Baran et al. 2021; Yaşar et al. 2021), some of which are related to a concept known as cryptic species, highly divergent phylogenetic lineages with morphological similarity, found recently in many studies (Sindaco et al. 2014; Tamar et al. 2015; Kornilios et al. 2018; Kotsakiozi et al. 2018; Mendes et al. 2018; Jablonski et al. 2019; Karakasi et al. 2021; Yousefabadi et al. 2021). Detection of cryptic species is widespread in the genus Darevskia (Ahmadzadeh et al. 2013; Freitas et al. 2016a; Candan et al. 2021; Rato et al. 2021; Arribas et al. 2022).

The genus Darevskia Arribas, 1999 (Lacertidae), which currently contains 35 species (Uetz, Freed \& Hošek 2022), is one of the prominent lizard groups part of Anatolian species richness with its unprecedented traits involving hybridization events among relatively far forms and consequent parthenogenetic reproduction of the hybrids (Freitas et al. 2016b; Tarkhnishvili et al. 2020a; Candan et al. 2021). The taxonomic positions of the species within the genus have always been conflicting (Gabelaia et al. 2018; Candan et al. 2021), due to the insufficiency of morphological characters for the separation of the species (Darevsky 1967; Tarkhnishvili et al. 2013). On the flipside of the coin, there is a consensus that three big monophyletic lineages are in Darevskia: "rudis", "caucasica" and "saxicola" and perhaps other minor ones of species not included in the concerned studies (Murphy et al. 2000; Tarkhnishvili 2012).

Darevskia valentini (Boettger, 1892), which belongs to the "rudis" clade, is one of the 15 Darevskia species distributed in Turkey (Baran et al. 2021), and its distribution area also includes Georgia, Armenia, Azerbaijan and Iran (Candan et al. 2021). As a result of previous morphological assessments, it is assumed that D. valentini includes three subspecies: D. valentini valentini (Boettger, 1892) (Type locality: Bazarkent, Armenia), D. valentini lantzicyreni (Darevsky \& Eiselt, 1967) (Type locality: Erciyes Mountain, Kayseri, Turkey) and D. valentini spitzenbergerae (Eiselt, Darevsky \& Schmidtler, 1992) (Type locality: Cilo Mountain, Hakkari, Turkey).

Although many partial morphological studies to compare these taxa had been conducted (Darevsky 1967; Darevsky \& Lukina 1977; Eiselt et al. 1992), it was not until after its molecular phylogenetic reconstruction we realized that there is insufficient information about the complexity of the group (Candan et al. 2021). What the genetic markers showed us are new outputs that potentially change the taxonomy of the group. Candan et al (2021) stated that D. valentini has undescribed genetic lineages which were hitherto not identified as distinct. These new lineages, which were morphologically related to D. v. lantzicyreni, have monophyletic positions in respect to other members of the "rudis" clade, which means that they are isolated. As a result of the phylogenetic approaches, these are clearly in conflict with the currently accepted (morphological) taxonomy (Eiselt et al. 1992). Additionally, it seems that D. valentini and D. rudis are very closely related species. This sister-clade situation has a puzzling pattern in some geographic areas, giving a polytomy, which makes it difficult to distinguish populations genetically (Candan et al. 2021).

A similar conception within "rudis" clade has occurred for D. rudis (Bedriaga, 1886), suggesting that there are four distinct genetic lineages (Rato et al. 2021). Main results based on phylogenetic construction showed that both sister species, D. valentini and D. rudis are paraphyletic, and that D. bithynica (Méhely, 1909) is separated from them as a distinct species due to the possible effect of a geographic barrier system (Kızılırmak River, Turkey). Indeed, D. rudis has also several subspecies, the systematic positions of them are controversial (Arribas et al. 2013; Koç et al. 2017; 2021; Rato et al. 2021). In a detailed taxonomic revision, two new subspecies were described as D. r. mirabilis from Ovit Pass (Kaçkar Mountains, Turkey) and D. r. bolkardaghica from Bolkar Mountain (Central Taurus Mountains, Turkey) (Arribas et al. 2013). One of them, D. r. bolkardaghica, appears to be genetically closer to D. r. rudis and D. v. lantzicyreni, while D. r. mirabilis appears in a relatively isolated clade (Candan et al. 2021).

Because of both reasons, being relatives of each other and the unresolved taxonomic situation of some
populations, both species D. valentini and D. rudis, should be evaluated together to reach robust conclusions. The aim of the study is (1) to make the most detailed morphological comparison including both D. valentini and D. rudis to detect certain species-specific characteristics, (2) to re-analysis their phylogenies using a large-scale dataset which includes D. v. spitzenbergerae for the first time, (3) to test the validity of entire subspecies scheme within the group, and (4) to describe two new taxa (at a species and subspecies level) from Turkey.

MATERIAL AND METHODS

External morphology and osteology

A total of 850 adult specimens (444 males and 406 females) were used for the morphological study (see Appendix 1 for locality data). Acronyms include information of the taxon to which they are ascribed and the name of the nearest locality (e.g. "spitzmergan1" is the specimen nr. 1 of the taxon spitzenbergerae from the Mergan Plateau). The study area covers a great part of Anatolia (Fig. 1) including the rarest and remote populations. Color slides of the specimens were taken and specimens were then fixed with 5% formaldehyde in 70% ethanol or 96% ethanol, and preserved in 96% ethanol according to the method described by Başoğlu \& Baran (1977). The specimens were incorporated into the collection of ZDEU (Zoology Department, Ege University) and kept in the Zoology Lab of the Department of Biology, Science Faculty, at Dokuz Eylül University, Buca, İzmir, Turkey.

FIGURE 1. Map showing both the localities of populations examined in morphology part and the possible distribution range for each taxa. Only the Turkish areas of the taxa are depicted. Numbers refer to population codes (Map ID) given in Appendix 1. Colors are lineage-specific which were identified in phylo-trees (see Figure 9).

The following metric dimensions were taken using digital calipers with accuracy to the nearest 0.01 mm : Snoutvent length (SVL): from the tip of snout to anal cleft. Tail length (TL): from anal cleft to the tip of the tail. Pileus width (PW): at the widest point between parietal plates. Pileus length (PL): from the tip of snout to the posterior margins of parietals. Head width (HW): at the widest point of the head. Head length (HL): from the tip of snout to posterior margin of the ear opening. Anal Width (AW): width of the anal or preanal plate. Anal Length (AL): longitude of the Anal plate. Hindlimb Length (LL): Longitude of the Hindlimb, from groin to the longest toe tip. Furthermore, morphometric indexes were calculated, Pileus Index (PI) [PL / PW], Head Index (HI) [HL / HW], Anal Index (AI) [AW/AL], Head Relative length (HRL) [HL/SVL], Hindlimb Relative length (LRL) [LL/SVL].

Meristic scalation characters considered here consisted of the following counts: supraciliar granules (leftright) (GR_S), supraciliar plates (left-right) (SUPRAC_PL), supralabial plates (left-right) (SUPRALAB-PL),
sublabial plates (left-right) (SUBLAB_PL), transversal series of gular scales between inframaxillar symphysis and collar (GULARIA), collaria (COLLARIA), supratemporal scales (Supratemporal Left) in left side, temporal scales 1 (transversal rows of temporal scales between masseteric and tympanic) (left-right) (TEMP1), temporal scales 2 (longitudinal rows of temporal scales between tympanic and parietal) (left-right) (TEMP2), Ventral plates (transversal) (VENTRALIA), Number of enlarged circumanals located anterior of the anal plate (PREANALIA), Number of preanals surrounding the big anal plate (CIRCUMANALIA), Number of femoral pores (left-right) (FEMORALIA), Longitudinal rows of scales on ventral surface of thigh between the femoral pores and the outer row of enlarged scales (left-right) (FEMUROUTER), Subdigital lamellae in the $4^{\text {th }}$ toe, left-right (LAMELLAE), Tibial scales lying on dorsal surface of crus (ankle or calf) between the large scales (TIBIALIA), and Transversal series of dorsal scales at the midtrunk (DORSALIA). The bilateral scales were combined in only one, non-redundant variable (the same acronyms, but without "a" and "b") for calculations.

Statistical procedures

As a result of the sexual dimorphism in biometry and scalation presented by all the species of Darevskia (see for instance Darevsky 1967), morphological analyses were carried out separately for males and females. The genetic results (see below and Candan et al. 2021) and current nomenclature were used to define the different OTUs.

Statistical analyses used in the morphological study were both univariate (ANOVA) and multivariate (Canonical Discriminant Analysis, CDA). ANOVA was run for SVL, scalation characters, and biometric indexes, with posthoc Scheffé tests at $p<0.05\left(^{*}\right)$ and $p<0.01\left({ }^{* *}\right)$ to detect differences among samples. In Canonical Discriminant Analysis (CDA), Chi-square and Wilks' Lambda were used to test the significance of each axis. If the groups have different scores, then the models discriminating between the groups and axes are significant. Bartlett's Sphericity Tests prove if the variables are uncorrelated, a prerequisite for successful discriminant analysis (Sokal \& Rohlf 1969; Blackith \& Reyment 1971; Legendre \& Legendre 1998, and online help in the statistic programs utilized, see below). In this Canonical Discriminant Analysis, each population is represented by a centroid (a hypothetical middle individual).

Minimum-length Spanning Tree (MST) and UPGMA dendrograms were computed from the Mahalanobis' distance matrices $\left(\mathrm{D}^{2}\right)$ derived from CDA. MST detects the nearest neighbors based on position in multidimensional space. The most connected samples may be interpreted as the "central" ones of the species; in theory, the overall most primitive from a morphological point of view. In contrast, UPGMA trees show the global relationships among the samples (Arribas 1999; 2010; Arribas et al. 2006).

Analysis of Similarity (ANOSIM) (Clarke 1988; 1993) was carried out to test the significance of the differences between the samples. ANOSIM tests whether the assigned groups are meaningful, that is, more similar within groups than between samples from different groups (see more details in Arribas 2010). To check for significance, pseudo-replication tests (1000 randomizations) were run to test if the given results could occur by chance. If the value of R is significant, there is evidence that the samples within groups are more similar than would be expected by random chance. The most useful feature of this test is that pairwise tests among populations allow significant testing of the differences among the groups concerned and detect which ones are different from the others.

ANOVA was calculated with NCSS 2007° (Hintze 2007). CDA and ANOSIM analyses were performed with Community Analysis Package 6° (Seaby \& Henderson 2019). MST and UPGMA trees were calculated with NTSYS 2.1° (Rohlf 2000).

Osteological examinations

Previously fixed and alcohol preserved specimens were cleared with $1 \% \mathrm{KOH}$ in deionized water and bones stained with alizarin red. They were posteriorly differentiated, and the excess of pigment was eliminated with Mall solution (80% of the previous clearing solution plus 20% glycerol) and preserved permanently in glycerol following the procedures of Taylor (1967) and Durfort (1978). Osteological nomenclature follows Arribas (1998). Information about the new specimens studied and their localities are given in Appendix 2. Also, specimens from Arribas (1998) and Arribas et al. (2013) were used together with the newly studied ones.

Molecular phylogenetic examinations

Laboratory procedure, datasets, phylogenetic reconstructions

To reach a robust conclusion for phylogenetic relationships of the studied group, we used two independent gene markers (Cyt-b from mitochondrial and MC1R from nuclear DNA) which are created by combining from two different publications related to D. valentini and D. rudis complexes, separately (Candan et al. 2021; Rato et al. 2021). Besides, the sequences of D. v. spitzenbergerae subspecies were added to datasets for detection of its true taxonomic position for the first time. For these samples, we followed to same protocols of DNA isolation and PCR conditions, which were described previously by Candan et al. (2021). DNA isolation was performed using PureLink (Invitrogen, Thermo Fisher Scientific, https://www.thermofisher.com/order/catalog/product/K182001). To obtain DNA sequences, we amplified isolated samples by Polymerase Chain Reaction (PCR) and PCR products were sequenced with an ABI PRISM 3700 (PE Applied Biosystems, Forster City, CA, USA). All sequenced DNA information has been submitted to GenBank for deposition. Finally, the total number of samples included in our phylo-analyses was 205 (see details in Appendix 3).

All DNA sequences in the datasets were aligned with MAFFT v7 (Katoh \& Standley 2013). The number and diversity of haplotypes for each genetic marker belonging to all individuals were determined using DnaSP v6 (Rozas et al. 2017). The uncorrected genetic distances (p-distances) among the main groups considered as distinct species in our phylogeny were calculated in MEGA X (Kumar et al. 2018). ModelFinder (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017) implemented in the IQTREE webserver (Trifinopoulos et al. 2016; http://iqtree.cibiv. univie.ac.at) was used for both determining the most suitable nucleotide evolution model and deciding the most appropriate partition strategy for $C y t-b$. The analysis showed that it should be considered as a single partition with TPM $2 \mathrm{u}+\mathrm{G}$ and HKY +G as the most suitable models for applying in phylo-analyses ML and BI, respectively.

Phylogenetic tree topology was created by performing different approaches based on Maximum Likelihood (ML) and Bayesian Inference (BI) with the Cyt-b dataset. ML analysis was conducted using IQ-TREE, with the appropriate partition scheme and model. Statistical support of the nodes was tested with SH-aLRT tests with 10,000 replicates (Guindon et al. 2010), 10,000 ultrafast bootstrap alignments (Minh, Nguyen \& Haeseler 2013) and 100 standard bootstrap alignments (Felsenstein 1985). BI analysis was carried out twice using MrBayes v3.2.6 (Ronquist et al. 2012) with eight chains and 2×10^{7} generations each, and with tree and log files recorded every 100 generations. The average standard deviation value of the discrimination frequencies (<0.01), was used as a measure to ensure that convergence had been reached. After a 25% burn-in, a majority-rule consensus tree was created from the remaining trees.

Single-locus species delimitation and multilocus coalescent-based species tree

For determination of possible species boundaries, we tested different approaches: (i) The ML phylogenetic tree obtained for $C y t-b$ dataset was used as input files in the multi-rate Poisson tree processes model (mPTP; Kapli et al. 2017; - https://mptp.h-its.org/\#/tree) (two runs, 10^{8} generations, a thinning of 10^{4} and a burn-in of 10%). (ii) The statistical parsimony analysis was conducted in TCS 1.21 (Clement et al. 2000) under the 90% connection limit of parsimony to construct independent haplotype networks, which were considered distinct evolutionarily significant units (ESUs) (Fraser \& Bernatchez 2001). (iii) We used the Bayesian version of GMYC (Reid \& Carstens 2012), bGMYC v.1.0.2 in R Studio, implementing 50,000 MCMC steps with 40,000 steps as burn-in and a thinning of 100 steps. As input, we used 1,000 posterior (ultrametric) trees of $C y t-b$ haplotypes constructed with BEAST v1.10.4 (Drummond et al. 2012). The analysis was carried out with two independent runs for 3×10^{7} generations. Other settings were as follows: Relaxed Uncorrelated Lognormal Clock, Yule tree prior, random starting tree. We determined whether the analyses had reached convergence with Tracer v1.7.1 (Rambaut et al. 2018). For the bGMYC analysis, we used a conservative posterior-probability threshold of 0.5 to identify putative species, compared to higher values that could overestimate the species' number. (iv) We performed the Species Tree and Classification Estimation, Yarely - STACEY v.1.2.5 (Jones 2017), in BEAST2 v.2.6.0 (Bouckaert et al. 2019) by using both loci, Cyt-b from mtDNA and MC1R from nDNA. We grouped main clusters for species' assignments (7 clusters; see Fig. 9). Two runs of 10^{9} generations were conducted, with an uncorrelated lognormal relaxed clock and a Yule tree prior [CollapseHeight $=0.001$; CollapseWeight $=$ beta (1.1) around (0.1); bdcGrowthRate $=\operatorname{lognormal}(\mathrm{M}=4.6, \mathrm{~S}=1.5)$; pop-PriorScale $=$ lognormal $(M=-7, S=2)$; relative death rate $=$ beta $(1.1)]$. For the species-delimitation analysis, we applied equal ploidy for the nDNA and mtDNA loci as a more robust approach that avoids the disproportionate influence of mtDNA data (Busschau et al. 2019). We used SpeciesDelimitationAnalyser (Jones 2015) to process output files and examine the clusters of species assignments.

Haplotype diversity and networks

Heterozygous positions for the $M C 1 R$ gene region were phased with the Bayesian algorithm of Phase 2.1 (Stephens et al. 2001; Stephens \& Scheet 2005) implemented in DnaSP (Rozas et al. 2017), with 1,000 iterations after a burnin of 100. All haplotypes were estimated with high probabilities (1.0 for $M C 1 R$). Thus, a haploid dataset that was used in networks was created from these diploid sequences for the nuclear gene region. Haplotype networks were created for each marker separately ($C y t-b$ and $M C 1 R$) under the statistical parsimony algorithm of TCS (Clement et al. 2000) using PopART v1.7 (Leigh \& Bryant 2015).

RESULTS

Morphology

Canonical discriminant analysis (MALES)

Discriminant Analysis (CDA) maximizes the discrimination of the samples, especially between the first two significant axes (with eigenvalues greater than one; Chi-square 3508.54 [276 d.f.; $P=0.001$] and 2370.84 [242 d.f.; $P=0.001$] for the first and second axes, respectively). The bidimensional plot (see Fig. 2) is a plane defined by the first axis (Eigenvalue 13.58; 51.6% of the variability explained) and the second axis $(7.67 ; 29.1 \%$ explained) that separates the samples with reduced overlap between them. Both axes together explain 80.3% of the total variability. Wilks Lambda is $0.000257338\left(\mathrm{~F}_{276}=18.63, P=0\right)$. As $P<0.05$, this demonstrates the existence of significant differences among the samples analyzed. Bartlett's Sphericity Tests further proved that the variables were uncorrelated, a prerequisite for successful discriminant analysis (Bartlett's Chi-Squared Test Statistic $=3512.68$, 276 degrees freedom; $P=0.001$).

As shown in Fig. 2, the first axis (51.6% of variability explained) separates D. bithynica (bithynica and tristis) males in the positive part of the axis, from the remaining samples of the rudis and valentini complexes in the negative one. These D. bithynica taxa appear very different and are characterized by greater values of head index (0.71), head relative length (0.69), SVL (0.32), hindlimb relative length (0.25); and the smaller scores of pileus index (-0.30). In this first axis, D. bithynica and the other taxa are well distinguished, as the former has longer heads both concerning its length as well as relative to their body length, but not in their pilei because other species (especially of the rudis complex) had smaller (overall size and length) but very wide heads.

The second axis (29.1% of variability explained) (Fig. 2) separates in its positive part the samples of the valentini complex from the rudis complex ones in the central and the negative part of the axis. The valentini complex forms (positive part) are characterized by greater hindlimb relative length (0.49), tibialia (0.47), ventralia (0.28), dorsalia (0.25), and the smaller values of head relative length (-0.38), SVL (-0.29) and femurouter (-0.29). This means that the valentini complex samples had comparatively longer limbs, a greater number of scales in the crus (which in this case correspond also to smaller sized and no or almost-no keeled ones), and less markedly, a greater number of ventral and dorsal scales. Also, valentini complex had comparatively smaller heads, and less markedly smaller sizes and number of scales in the outer part of the crus. Among the rudis complex, the extreme values are for D. r. bischoffi (Böhme \& Budak, 1977) (with the most contrary values respect the valentini complex) and D. r. bolkardaghica (the taxon with less negative values and thus more similar to the valentini complex and D. bithynica). Among the valentini complex, there are very few differences in this axis.

There would be no real overlap between the OTUs of the rudis complex and those of the valentini complex if it were not for the fact that some of the D. r. bolkardaghica individuals are displaced (that is, have morphological characteristics) from D. v. lantzicyreni, an interesting issue in which we will recall later.

The third axis (only 8% of variance explained; eigenvalue of 2.22) [Chi-square 1453.64 , with 210 d.f.; $P=$ 0.001] slightly separates in its positive part D. rudis s. str. from the other rudis complex forms (and also from D. bithynica and in a great part of the valentini complex ones), especially characterized by greater values of dorsalia (0.95). Among the valentini complex forms, this axis orders them clinally from D. v. lantzicyreni (with the greater dorsalia) up to D.v.valentini (with the smaller values), with clade A, clade B , and D.v. spitzenbergerae in more intermediate positions.

FIGURE 2. Canonical Discriminant Analysis (CDA) plot for MALES. Specimens, sample centroids, and group perimeters are represented. Green circle: D. v. spitzenbergerae; Clear blue triangle: "Clade A" from Candan et al. 2021; Inverted violet triangle: "Clade B" from Candan et al. 2021; Cross: D. v. valentini; Blade: D. v. lantzicyreni; Asterisk: D. b. bithynica; Diamond: D. b. tristis; Minute dot: D. r. rudis; Side inclined clear gray triangle: D. r. bischoffi; Side inclined dark gray triangle: D. r. obscura; Clear gray square: D. r. macromaculata; Gray circle: D. r. mirabilis; Yellow triangle: D. r. bolkardaghica. These two first axes explain together 80.3% of the total variability.

A fourth axis (in the edge, but still significant, with eigenvalue 1.02, 3.8\% of variability; Chi-square 957.122, with 180 d.f.; $P=3.87 \cdot 10^{-6}$) discriminated D. r. mirabilis Arribas, Ilgaz, Kumlutaş, Durmuş, Avcı \& Üzüm, 2013 in its extreme negative part, characterized by the smaller values of $\operatorname{SVL}(0.43)$, femoralia (0.32) and Hindlimb relative length (0.32).

The three-dimensional representation of these axes (Fig. 3) (the three axes together explain 89.1% of all the variability) shows the MST (Minimum Spanning Tree) superimposed on the three-dimensional representation of the position of the centroids. This MST can be considered as an unrooted NJ and connects each centroid with its closest one. The lowest distances between OTUs are those of clade A and clade B (0.73), as well as between D. r. obscura (Lantz \& Cyrén, 1936) and D. r. macromaculata (Darevsky, 1967) (0.95). The greatest minimum distances are between D. r. bolkardaghica and D. bithynica bithynica (7.47). In general, all the populations of the rudis complex, as well as the D. bithynica or the D. valentini complex are related with others within each one of these three groups, except the one already mentioned as the greatest, interspecific, distance (bithynica-bolkardaghica) or the one between $D . v$. spitzenbergerae and D. r. bolkardaghica (3.34) which is the one that relates the valentini and the rudis complexes. Within the rudis complex, the relatively high distance between D. r. macromaculata and D. r. bolkardaghica (2.62) is also noteworthy. Distances between male centroids can be seen in Table 1 (below diagonal).

Three OTUs are the most connected in the MST: spitzenbergerae, bolkardaghica and macromaculata, with three connections each. Being the most connected could have two explanations; the first being a primitive population from which several lines have diverged (or from a common ancestor of its characteristics) with which it appears closely connected (the idea of "centrality", see for instance Arribas, 1999, 2010), or that it is a population of mixed origin, which appears together with those that gave rise to it. It is not easy to distinguish which may be the case, but genetically almost D. v. spitzenbergerae or D. r. bolkardaghica do not seem to be introgressed, thus can be considered as more primitive forms.

It is interesting that the two most meridional and isolated forms of both groups (D. r. bolkardaghica and D.v. spitzenbergerae), are the ones that relate both different lines with the smaller distance, even when other taxa in close contact seem to have introgressed in some places.

The three first axes of the CDA warrant the discrimination of 87.6% of the specimens, very high. In general, all are above 75%, except D. r. macromaculata (only 70.8%), reaching even 100% in clade A (Table 3).

FIGURE 3. The three-dimensional representation of MALE centroids (bidimensional of samples and centroids in Fig 2) shows the MST (Minimum Spanning Tree) superimposed on the three-dimensional representation of the position of the centroids. The three axes together explain 89.1% of all the variability. This MST can be considered equivalent to an unrooted NJ and connects each centroid with its closest relative. See text for explanation.

FIGURE 4. UPGMA tree derived from the matrix of distances (Table 1) among MALE samples, showing three great groups: a basal one, well different, with D. bithynica (inc. ssp. tristis), and two more closer groups that include the former rudis and valentini-complexes. See the text for an explanation of the results. The tree, derived from the calculation of ultrametric distances calculated in UPGMA, reflects very well the relationships in respect to the original distanced matrix (see Table 1). Its Cophenetic Correlation Index, $r=0.95$, shows that the obtained dendrogram has a very good fit ($r>0.9$; Rohlf 2000).

UPGMA tree (Fig. 4) derived from the matrix of distances (Table 1) shows three groups: a basal one, well different, with D. bithynica (inc. ssp. tristis), and two more closer groups that include the rudis complex and the valentini complex. In the first, rudis s. str. is basal to the other taxa, whereas, in the valentini complex, valentini s. str. is closer to the D. v. spitzenbergerae, and clade A, clade B, and lantzicyreni are more closely related among them. The tree, derived from the calculation of ultrametric distances calculated in UPGMA, reflects very well the relationships in respect to the original distanced matrix (see Table 1). Its Cophenetic Correlation Index, $\mathrm{r}=0.95$, shows that the obtained dendrogram has a very good fit ($\mathrm{r}>0.9$; Rohlf 2000).

ANOSIM (MALES)

Analysis of Similarity (ANOSIM) of the males sample data show a good taxa assignation $(\mathrm{R}$-statistic $=0.527101$, $P<0.001,1000$ randomizations). As the general test is significant, the different samples differ more between themselves than internally. In general, all pairs of samples compared are significantly different ($P<0.01$), except bithynica-tristis, and macromaculata-obscura (see Table 2) that are not different (their partial tests are close to zero and even negative, so the probability of misclassification among them is very high). Darevskia v. spitzenbergerae and clade A are significantly different, but close to the threshold of significance $(P=0.044)$.

Canonical discriminant analysis (FEMALES)

Discriminant Analysis (CDA) maximizes the discrimination of the samples between the three significant axes (Eigenvalues greater than one; Chi-square 3220.71 [276 d.f.; $P=0.001$] and 2198.83 [242 d.f.; $P=0.001$] for the first and second axes, respectively). The bidimensional plot (see Fig. 5) is a plane defined by the first axis (Eigenvalue 13.06; 49.8% of the variability explained) and the second axis ($7.98 ; 30.4 \%$ explained) that separates the samples in a similar way to the males, although with a slightly less clear separation between the rudis and the valentini complexes. Both axes together explain 79.8 \% of the total variability. Wilks Lambda is 0.000240447 $\left(\mathrm{F}_{276}=17.11, P=0\right)$. As $P<0.05$, this demonstrates the existence of significant differences among the samples analyzed. Bartlett's Sphericity Tests further proved that the variables were uncorrelated, a prerequisite for successful discriminant analysis (Bartlett's Chi-Squared Test Statistic $=3224.88$, 276 degrees freedom; $P=0.001$).

As shown in Fig. 5, as an occurred in the male's analysis, the first axis (49.8% of variability explained) separates D. bithynica (sspp. bithynica and tristis) females in the positive part of the axis, from the remaining samples of the rudis and valentini complexes in the negative one. As in male analysis, D. bithynica appears very different and characterized by greater values of head index (0.83), head relative length (0.51), SVL (0.29), hindlimb relative length (0.39); and the smaller scores of pileus index (-0.37) in respect to the rudis and valentini complexes, with the same explanation as in males (see above).

The second axis (30.4% of variability explained) (Fig. 5) separates in its positive part the samples of the valentini complex from the rudis complex ones in the central and the negative part of the axis. The valentini complex forms (positive part) are characterized by greater tibialia (0.58), hindlimb relative length (0.35), head index (0.34), and dorsalia (0.27), and the smaller values of head relative length (-0.54), femurouter (-0.28) and SVL (-0.27). In the females, the valentini complex samples had comparatively longer limbs, a greater number of scales in the crus (which in this case correspond also to smaller sized and no or almost-no keeled ones) and less markedly, a greater number of ventral and dorsal scales. Also, valentini complex had comparatively smaller and narrow heads, and less markedly smaller sizes and scales in the outer part of the crus. In the extreme of the rudis complex, with the contrary scores to the valentini complex, outstands D. r. bischoffi, with the extreme contrary values.

The distinction is very similar to the case of males, with an overlap in these two dimensions of the taxa of the rudis complex with each other, and the valentini complex with each other, with hardly any overlap between both groups. Interestingly, this little overlap occurs between rudis s. str. and lantzicyreni, and could correspond to difficult to classify or hybrid specimens.

The third axis (only 8.6% of variance explained; eigenvalue of 2.25) hardly contributes to discrimination. Within the large group of rudis and valentini complexes, D. rudis s. str. stands out a little (but with a lot of overlap) towards the positive part (with the greater values of dorsalia), while towards the negative D. valentini s. str. appears in the other extreme with the lower dorsalia.

FIGURE 5. Canonical Discriminant Analysis (CDA) plot for FEMALES. Specimens, sample centroids, and group perimeters are represented. Green circle: D. v. spitzenbergerae; Clear blue triangle: "Clade A" from Candan et al. 2021; Inverted violet triangle "Clade B" from Candan et al. 2021; Cross: D. v. valentini; Blade: D. v. lantzicyreni; Asterisk: D. b. bithynica; Diamond: D. b. tristis; Minute dot: D. r. rudis; Side inclined clear gray triangle: $\boldsymbol{D} . \boldsymbol{r}$. bischoffi; Side inclined dark gray triangle: D. r. obscura; Clear gray square: D. r. macromaculata; Gray circle: D. r. mirabilis; Yellow triangle: D. r. bolkardaghica. These two first axes explain together 79.8% of the total variability.

The fourth axis has an eigenvalue lower than 1, but very close (eigenvalue $0.95,3.6 \%$ of variability; Chisquare 893.835 , with 180 d.f.; $P=3.92 \cdot 10^{-6}$) and discriminates especially clade A and in a lesser degree D. v. spitzenbergerae towards its positive part, characterized by higher values of lamellae (0.51), preanalia (0.44) and femoralia (0.36).

The three-dimensional representation of these axes (Fig. 6) (the three axes together explain 88.4% of all the variability) shows the MST (Minimum Spanning Tree) of females superimposed on the three-dimensional representation of the position of the centroids. The lowest distances between OTUs are those of D. r. mirabilis and D. r. obscura (0.95), as well as between D. r. bolkardaghica and D. r. mirabilis (0.99). The greatest minimum distances are between D. v. spitzenbergerae and D. bithynica s. str. (8.16), probably the geographically farthest populations here studied. As occurred in males, all the populations of the rudis complex, as well as the D. bithynica or the D. valentini complex are related with others within each one of these three groups, except the one already mentioned as the greatest distance (bithynica-spitzenbergerae) that connect the valentini complex with D. bithynica, or the one between D. v. spitzenbergerae and D. r. bolkardaghica (3.33) that connects the valentini and the rudis complexes (as occurred in males). Distances between centroids can be seen in Table 1 (above diagonal).

Three OTUs are the most connected in the MST are clade A and D. r. obscura with three connections each. As in the male analysis, it is interesting that there are two extreme populations and displaced towards the south of both groups (D. r. bolkardaghica and D. v. spitzenbergerae) result to be the ones that connect the rudis and the valentini complexes. The three first axes of the CDA warrant the discrimination of 88.67% of the females, very high and nearidentical to males. All the correct reclassifications are above 77%, reaching even a 100% in D. v. spitzenbergerae, clade A, D. valentini s. str., D. bithynica s. str., D. r. mirabilis and D. r. bolkardaghica (Table 3).

UPGMA tree (Fig. 7) derived from the matrix of distances (Table 1) is similar to the males one and shows three groups: a basal one, well different, with D. bithynica (inc. ssp. tristis), and two more closer groups that include the rudis complex and the valentini complex. In the first, D. rudis s. str. is basal to the other taxa, whereas, in the valentini complex, D. valentini s. str. is basal, whereas D. v. spitzenbergerae appears closer to D. v. lantzicyreni. Clades A and B are paired between them. As in the males, the tree reflects very well the relationships in respect
to the original distanced matrix (see Table 1). Its Cophenetic Correlation Index, $r=0.94$, shows that the obtained dendrogram has a very good fit ($\mathrm{r}>0.9$; Rohlf 2000).

FIGURE 6. The three-dimensional representation of FEMALE centroids (bidimensional of samples and centroids in Fig 5) shows the MST (Minimum Spanning Tree) superimposed on the three-dimensional representation of the position of the centroids. The three axes together explain 88.4% of all the variability. This MST can be considered equivalent to an unrooted NJ and connects each centroid with its closest relative. See text for explanation.

FIGURE 7. UPGMA tree derived from the matrix of distances (Table 1) among FEMALE samples, as in the males one, shows three groups: a basal one, well different, with D. bithynica (inc. ssp. tristis), and two more closer groups that include the former rudis and valentini-complexes. See the text for an explanation of the results. The tree, derived from the calculation of ultrametric distances calculated in UPGMA, reflects very well the relationships in respect to the original distanced matrix (see Table 1). Its Cophenetic Correlation Index, $r=0.94$, shows that the obtained dendrogram has a very good fit ($\mathrm{r}>0.9$; Rohlf 2000).

ANOSIM (FEMALES)

Analysis of Similarity (ANOSIM) of the females sample data show a good taxa assignation (R-statistic $=0.479062$, $P<0.001,1000$ randomizations). The general results are similar to the male analysis and in general, the great majority of samples are statistically different ($p<0.01$) (Table 2). Among the valentini complex, clade B and D. v. spitzenbergerae are not significantly different $(\mathrm{P}=0.105)$. In the rudis complex, D. r. bischoffi and D. r. macromaculata $(\mathrm{P}=0.23)$, D. r. macromaculata, and D. r. obscura $(\mathrm{P}=0.48)$ and D. r. obscura and D. r. bolkardaghica $(\mathrm{P}=0.34)$ are also not different. Finally, also D. b. bithynica and D. b. tristis $(\mathrm{P}=0.85)$ are not different. However, some of these female samples (i.e. bithynica s. str., bolkardaghica and mirabilis) are relatively short and results are less reliable than in male analysis.

ANOVA

Descriptive statistics and ANOVA results can be seen in Tables 3, 4 and 5. A graphic display of the degree of significant differences $(p<0.01)$ among the different OTUs is represented in Fig. 8. As can be seen, the overall representation is similar to the current taxonomy. However, D. r. rudis appears fairly differentiated to the remaining of the rudis complex (with D. r. obscura and D. r. macromaculata almost identical, and also D. r. bolkardaghica and D. r. mirabilis successively related to the former ones). Darevskia b. bithynica and D. b. tristis (Lantz \& Cyrén, 1936) appear related and well-differentiated from the remaining OTUs. In the valentini complex, D.v. spitzenbergerae is almost identical (biometry and scalation) to clade A , and both successively related to clade B, D. v. lantzicyreni, and D. v. valentini. The discordant note is the presence among this group of D. r. bischoffi, probably due to the differences accumulated by its strong size and allometry that distort the results in respect to other rudis complex OTUs.

FIGURE 8. A graphic display of the degree (number) of significant differences ($p<0.01$) among the different OTUs (MALES and FEMALES together). As can be seen, the overall representation is similar to the "old" (only morphological) taxonomy. See text for details.

Among the findings in ANOVA (Tables 4 and 5) (M: males; F : females) are noteworthy:
-Low supraciliar granula (M, F) and gularia (M), and higher circumanalia (M) counts in D. r. mirabilis, especially the first, are distinctive of this taxon.
-Higher ventralia counts in D. v. spitzenbergerae, clade A, and clade B (M) and in general, in all the valentini complex (F) than in D. bithynica or the rudis complex taxa.

- Preanalia is higher in clade A and strongly characterizes it (M, F).
-Lamellae are characteristically lower in D. r. bolkardaghica (M, F).
-Tibialia (M, F) is distinctive with higher counts (and smaller scales size) in the valentini complex (and D. b. bithynica), appearing the lower counts in part of the rudis complex (D. r. bischoffi, D. r. obscura, and D. r. macromaculata). Darevskia r. rudis, D. b. tristis, D. r. bolkardaghica and D. r. mirabilis appear in intermediate scores (but in scale size and aspect are similar to the lower scored ones, the rudis complex). This can be seen in Fig. 9. There are two morphologies: small and feebly keeled (valentini complex and D. bithynica ssp.), or very big and strongly keeled scales (most of the rudis complex taxa).
-Dorsalia is smaller in a great part of the rudis complex (except D. r. rudis) than in the valentini complex (except in D. v. valentini that has lower scores similar to the main rudis complex) and D. bithynica ssp..
-Temporalia1 is somewhat smaller in D. r. macromaculata and D. r. obscura (M, F).
-Temporalia2 is a bit lower in D. v. valentini (M,F).
-SVL (size) is clearly greater in D. r. bischoffi (M, F).
-Pileus index, head index and head relative size are greater (longer pilei and comparatively bigger heads) in D. bithynica sspp. (M, F).
-Anal index, a bit greater (comparatively wider) in D. valentini than in D. bithynica or the rudis complex.
-Hindlimb relative length is comparatively smaller in all the rudis complex than in the valentini complex. The greater scores (greater hindlimbs related to climbing) appear in D. bithynica sspp.

Size and keeling of crus area scales

Another qualitative characteristic studied and indirectly expressed in tibialia (see above), is the scale size and keeling of the shin (upper part of the crus or shank) area in the rudis and valentini complexes (See Fig. 9). Scale size (great, medium, small) and keeling development (weak keeling, medium keeling, strong keeling) are different among the different forms. Often, are compared with the size of the dorsal scales (as in Darevsky, 1967: but there the sense of the different subspecies -i. e. rudis s. str.- was different and the size estimation a bit different from ours). We have compared size with dorsal scales from the lumbar part of the animal, in its widest part, not far from hindlimbs.

Darevskia v. lantzicyreni has a medium scale size with medium keeling in the shin, and is similar or a few smaller than dorsum ones.

Darevskia v. "clade B" from Candan et al. (2021) has a small scale with weak keeling, that are also smaller than the dorsal ones.

Darevskia v. spitzenbergerae has a small scale size with weak keeling that are smaller than dorsal ones.
Darevskia v. "clade A" from Candan et al. (2021) has a medium scale size with weak keeling, smaller than dorsal ones.

Darevskia v. valentini has a medium-scale size with weak keeling, smaller than dorsal ones.
Darevskia b. bithynica has a small scale size and weak keeling, smaller than dorsal ones.
Darevskia b. tristis has a medium-scale size with weak keeling, smaller than dorsal ones.
Darevskia r. bischoffi has a great scale size with strongly keeling, greater than dorsal scales.
Darevskia r. obscura has great scale size and strongly keeling, similar or a bit smaller than dorsal scales.
Darevskia r. macromaculata has a great scale size with strongly keeling, similar or a bit smaller than dorsal ones.
Darevskia r. bolkardaghica has medium scale size and medium keeling, similar or a bit smaller than dorsal ones.

Darevskia r. rudis has a medium scale size with medium keeling, similar or a bit smaller than dorsal ones.
Darevskia r. mirabilis with medium scale size and medium keeling, similar or a bit smaller than dorsal ones.
The strong size and keeling are associated with the rudis complex (D. rudis and its former subspecies), whereas small size and feebly or near null keeling with the valentini complex. However, as can be seen in this work, the assignation of the different taxa to one or other species is far from being clear, and the situation in the shin keeling also shows many intermediate situations between both extremes. One taxon, D. r. bischoffi, has very big and strong keeled scales. Darevskia r. obscura and D. r. macromaculata had scales not so big (medium) but also strongly keeled. Darevskia v. lantzicyreni, D. r. bolkardaghica, D. r. mirabilis and D. r. rudis had marked keeling, not so strong, in medium-sized scales. Medium or small-sized scales with feeble keeling (even barely visible) appear in D. valentini s. str., D. v. spitzenbergerae, clade A, clade B, D. b. bithynica and D. b. tristis.

Osteology

Osteological characteristics were similar to other Darevskia, including its derived increase of vertebral numbers (Arribas 1998; Arnold et al. 2007). Characteristics of D. v. valentini are here described, and following, the variation of the other forms so far related to D. valentini and comments about other taxa of the D. rudis complex (see Table 6).

Darevskia v. valentini - Skull: Seven, very rarely eight premaxillary teeth, ever unicuspid. Specimens have 16 to 20 maxillary teeth in each side (average 18), and from 18 to 25 in dentary (average 22), with bicuspid ones more numerous than the monocuspid. Postfrontal and postorbital bones are separated from birth, with the anterodistal process of the postfrontal and anteromedial process of the postorbital present (the latter, present in all the taxa of the so-called rudis group), very rarely the latter can be fairly small. Postfrontal is more or less equal in length than postorbital, rarely smaller. Squamosal bone overlaps with postorbital in a third (rarely from only in one fourth to a maximum of a half) of the length of the latter.

Vertebral column: The number of presacral vertebrae shows sexual dimorphism. Males have 27 presacral vertebrae. Females have 29 (from 28 to 30 presacral vertebrae). In males is accompanied by 6 posterior dorsal vertebrae, but in females, there is an increase of presacral vertebrae, from 27 to a range of 28-30, and usually appears an extra short rib, counting seven or eight in total). The third vertebra without associated ossified ribs. Sternal costal formula: (3+2). A-Type (rarely some tendency to B-Type) of pre-autotomic caudal vertebrae (from Arnold, 1973) are present.

Girdles: Clavicles open (very rarely closed). Sternal fontanel is oval (rarely irregular oval tending to irregular cordiform). Interclavicle with the lateral branches perpendicular to the central axis (cruciform), but can be slightly inclined towards the rear. Sternal-xiphisternal formula $[3+2] 1$, thus is, three ribs connected to the sternal plate, two to xiphisternum, and one inscriptional rib (free).

Darevskia v. lantzicyreni has 7 premaxillary teeth, 17.6 (17-18) maxillary teeth, and 22.3 (21-23) dentary ones, more bicuspid than unicuspid. Males have the 27 presacral vertebrae typical of Darevskia (rarely reduced to 26 and extremely rare to 25) with 6 or 7 short ribs, and females 28 (rarely 27 in parallel to male's reduction) with six short ribs. Without rib associated to the third vertebrae. Tail vertebrae A-type. Clavicles open (more rarely closed). Interclavicle cruciform or with branches slightly directed backward. Sternal fontanelle oval. Sternal-xiphisternal formula [3+2]1. Postorbital and postfrontal are similar in length (more rarely the first slightly smaller), with the anteromedial process of the postorbital present. Postorbitary overlaps with squamosal in one-third (1/12-1/9) of its length.

Darevskia v. spitzenbergerae has 7 premaxillary teeth, 17.25 (16-18) maxillary teeth, and 21 (20-23) dentary ones, more bicuspid than unicuspid. Males have 27 presacral vertebrae with 6 short ribs, and females 29 with 6 or 7 short ribs. Without rib associated to the third vertebrae. Tail vertebrae A-type. Clavicles open (very rarely closed). Interclavicle with branches slightly directed forwards. Sternal fontanelle oval (more rare irregular cordiform). Sternal-xiphisternal formula $[3+2] 0 / 1$, more rare $[3+1] 1$. Postorbital greater than postfrontal, more rare similar in length, with the anteromedial process of the postorbital present. Postorbitary overlaps with squamosal in one-third (rarer $1 / 2$) of its length.

Clade A (from Candan et al. 2021) has 7 premaxillary teeth, 20.5 (19-21) maxillary teeth, and 23.5 (23-24) dentary ones, more bicuspid than unicuspid (very rare more or less in equal proportion). Males have 27 presacral vertebrae with 6 short ribs, and females and 29 with 6 short ribs. Without rib associated to the third vertebrae. Tail vertebrae A-type. Clavicles open or closed. Interclavicle with branches slightly directed forward or backward. Sternal fontanelle oval. Sternal-xiphisternal formula [3+2]1. Postorbital greater or equal than postfrontal, with the anteromedial process of the postorbital present (sometimes fairly reduced). Postorbitary overlaps with squamosal in one-third (rarer $1 / 2$) of its length.

Clade B (from Candan et al. 2021) has 7 premaxillary teeth, 17 (15-18) maxillary teeth, and 21.25 (20-22) dentary ones, more bicuspid than unicuspid. Males have $27 / 28$ presacral vertebrae with 6 or 7 short ribs respectively, and females and 29 with 7 short ribs (which suggest strongly the existence of females with 28/6). Without rib associated to the third vertebrae. Tail vertebrae A-type. Clavicles open, more rarely closed. Interclavicle cruciform or with branches slightly directed backward. Sternal fontanelle oval. Sternal-xiphisternal formula [3+2]1. Postorbital equal than postfrontal, with the anteromedial process of the postorbital present. Postorbitary overlaps with squamosal between $1 / 3$ and $1 / 2$ of its length.

Data about the rudis complex taxa are in Arribas et al. (2013). The most apparent differences between the large groups (species or complexes) within the rudis group [rudis and valentini complexes, together with D. portschinskii (Kessler, 1878)] are:

Usually, the number of bicuspid teeth is higher than that of unicuspids in the dentary and maxilla, but our specimens of D. portschinskii are more or less equal (sometimes a little higher, sometimes a little less).

The number of presacral vertebrae in males is usually 27 (the typical number in Darevskia), but there can be an increase to 28 . There may also be a reduction in this number to 27 in some specimens of D. v. lantzicyreni, D. r. bischoffi, D. r. obscura, or D. r. mirabilis, and even more rare down to 25 in a single specimen of D. v. lantzicyreni.

The same in females, the base number is 28 , but there may be greater abdominal elongation related to egg carrying, with an increase to 29 and even 30 , accompanied by a greater number of short ribs in the lumbar area. Also, there may be a reduction of the vertebral number in some specimens (parallel to that of the males) as occurs in a single specimen of D. v. lantzicyreni and D. r. rudis with 27.

The presence of an (almost partially) ossified rib associated with the third vertebra occasionally appears as an atavistic character in Lacertini, usually in small and marginal populations. In this group, we have only seen them in some specimens of D. r. bolkardaghica and are extremely rare or barely visible in D. r. obscura and D. r. bischoffi.

The pattern of pre-autotomic caudal vertebrae is A type in all except some D.v.valentini some of which show any of the processes as the type B and very rarely also in D. bithynica sspp.

Claviculae can be open or closed and both models coexist dominating one or the other.
The basic interclavicle is cruciform, but the lateral branches slope forward or backward in many individuals. Pure cruciforms are especially dominant throughout the rudis complex and D. bithynica ssp., Darevskia portschinskii, D. valentini s. str., clade B, D. v. lantzicyreni, Darevskia r. bischoffi, D. r. macromaculata and D. r. chechenica (Eiselt \& Darevsky, 1991) have them cruciform, coexisting with branches somewhat backward. With the lateral branches inclined forward appears D. v. spitzenbergerae (with only this model) and in "clade A" (coexisting with branches backward). It also appears in Georgian specimens of D. r. obscura.

The sternal fontanelle is oval, but can vary (elongate, irregular in shape) until recalling the irregular cordiform shape, be reduced or absent (as in D. bithynica s. str.), or adopt particular shapes, as sand-clock, irregular cordiform, or trilobate in forepart (D. r. bolkardaghica).

The sternal-xiphisternal formula is usually $3+2$, that is, three ribs join the sternum and two the xiphisternum. There is usually an inscriptional rib. These inscriptional ribs may rarely be missing (frequently in our D. portschinskii), or increase by one, although the variations are frequently but not always at the expense of a xiphisternal one.

Postorbital and postfrontal usually have similar lengths. In the valentini complex are similar or the first is a bit longer. The exception is D. v. lantzicyreni in which is also subequal or the first is smaller than the second. In the rudis complex (including D. bithynica ssp.) are subequal or the postorbital is a bit smaller (what is equal or with the contrary tendency to the valentini complex). In D. portschinskii is as in D. valentini but with postocular greater or equal than postfrontal, in similar proportions. Anterolateral process of the postfrontal is ever-present, and the anteromedial of the postorbital also, but can be, more rarely, reduced [D. bithynica ssp., D. r. obscura, D. r. macromaculata, D. r. svanetica, D. r. chechenica and D. r. rudis]. In D. v. valentini and D. v. "clade A" can be (but rarely) reduced.

Squamosal and postorbital overlap around one-third of the length of the latter. Sometimes with a bit more (around $1 / 2$) or less ($1 / 4$) overlap. The $1 / 2$ is the common ratio in D. bithynica ssp. and the most common in D. r. bolkardaghica. Very rarely extreme reduced overlap appears in isolated teratological specimens (up to only $1 / 9$ in a single D. v. lantzicyreni or even no contact in a specimen of D. r. bischoffi).

Molecular analyses

Mitochondrial phylogenetic trees

A partial of 711 bp of Cyt-b gene fragment was used both in ML and BI analyses. Due to the topological similarity of the resulting phylogenetic trees, we present the ML tree with the bootstrap and posterior probability (pp) values obtained from both analyses (Fig. 9). One of the prominent results obtained from the analyses is that two basal clades separated clearly from the remaining taxa within the D. valentini/D. rudis complexes with high bootstrap and pp values. One of them (clade A) is related to D. v. spitzenbergerae, while the other (clade B) represents a new lineage that Candan et al. (2021) has identified for the first time. The status of D. r. mirabilis (clade C) is also apparent by locating in a separate branch than the other taxa. This monophyletic clade has also high bootstrap and pp values, which help to accept its true position. Considering the remaining taxa, it seems that internal nodes have low bootstrap and pp values pave the way for polytomy by messing up the tree topology, while external nodes with higher values have
supported each taxon as monophyletic. While the three defined species, D. valentini (clade F), D. bithynica (clade E) and D. obscura (clade G), clearly differ from each other, a group including D. v. lantzicyreni, D. r. rudis and D. r. bolkardaghica (clade D) exhibits an overlapping complex structure, which is also well-documented in Candan et al. (2021).

FIGURE 9. Maximum Likelihood (ML) tree (left) and collapsed one for the same tree (right) are given. Numbers on branches indicate the bootstrap and posterior probability (pp) values (ML/BI). Each species delimitation result is shown, and a vertical bar represents each cluster obtained from the analysis. Red circles indicate the internal nodes of each OTUs. The new nomenclature proposed in the text is used.

Species delimitation approaches

Here, we preferred to apply different approaches based on both single- and multi-locus species delimitation to detect species boundaries. Although entirely obtained results of single-locus gave us different outputs, there are overlapping findings in the definition of new species groups (Fig. 9). All analyses support that clades A and B are distinct taxa. Darevskia r. mirabilis (clade C) is also supported by all analyses except mPTP as a separate species. Interestingly, bGMYC constitutes a fragmented profile inside D. valentini/D. rudis complex (clade D) and D. bithynica (clade E), while the same situation occurs for D. bithynica only in TCS. Finally, D. valentini (clade F) and D. obscura (clade G) are supported by only bGMYC within single-locus approaches.

A multi-locus species delimitation, STACEY, runs a total of 15,001 different models for the number and composition of species within the dataset including $C y t-b$ and $M C 1 R$. The prevailing model, supported by 99% of the posterior distribution of samples, showed that entire species groups studied here are valid.

Haplotype networks and genetic distances

The network analysis showed independent results for each gene region as expected due to different sources: mitochondrial Cyt-b and nuclear MC1R (Fig. 10). Detected haplotypes were 86 for Cyt-b and 37 for MC1R. Haplotype diversities were as follows: $0.979(\pm 0.004)$ for $C y t-b$ and $0.812(\pm 0.013)$ for $M C 1 R$. Considering the result of $C y t-b$, it seems that all putative species groups do not share any haplotypes. As an interesting point, clades A and B link with D. r. obscura (clade G) rather than D. valentini (clade F). The MC1R gene region, on the other hand, exhibits a more complicated pattern, which is associated with its diploid nature, with sharing haplotypes. Clade A has only one haplotype (Hap16), sharing with clades B, C and G. Clade B also finds in Hap26, sharing with clade D. Clade C is distributed in three separate haplotypes as Hap1, Hap16 and Hap18. For detailed information see Fig. 10 and Appendix 3.

The genetic distance values for $C y t-b$ were determined, which can be considered sufficient for species discrimination, while they were insignificant for nuclear one. Although the nuclear marker seems to contribute to the genetic positions of some clades in the haplotype network, it can not help us to understand the genetic distinctiveness between/within species, because non-informative sites emerged from slower substitution rates. Considering mitochondrial genetic distances, there appear to be relatively close values among all groups ranging from 3.2 to 6.1 except only one as 1.6 between D. valentini (clade F) and D. obscura (clade G). Genetic distances, within and among the main groups, are given in Appendix 4.

Taxonomic implications

Considering our findings based on both morphology and phylogenetic, we accept that a new taxonomic reconstruction is inevitable, and suggest the following taxonomy.

Clade B from Candan et al. (2021) and this study, is described as distinct species.

Darevskia josefschmidtleri sp. nov.

(Appendix 5; Fig. 12e).

Synonymy/Chresonymy:

Lacerta valentini "Zwischenpopulation"(intermediate population); Eiselt, Darevsky \& Schmidtler, 1992. (from "Çaldıran"-sic.!-)
Darevskia valentini "Clade B"; Candan et al. (2021) (same locality as this study)
ZooBank registration (http://zoobank.org): urn:lsid:zoobank.org:act:56CFE08E-164E-485B-8F4C-94EA76293128.

Holotype: ZDEU220/2016 (n.2). đ, Başeğmez Village, Çaldıran, Van, Turkey. leg. Kamil Candan, Nurettin Beşer and Mehmet Kürşat Şahin, 24.06.2016. Conserved in ZDEU collection.

FIGURE 11. Escalation of the calf area in the rudis and valentini complexes. Scale size (great, medium, small) and keeling development (weak keeling, medium keeling, strong keeling). The new nomenclature proposed in the text is used. D. r. lantzicyreni comb. nov. (medium scale size, medium keeling); D. josefschmidtleri sp. nov. (small scale size, weak keeling); D. s. spitzenbergerae stat. et comb. nov. (small scale size, weak keeling); D. s. wernermayeri ssp. nov. (medium scale size, weak keeling); D. valentini (medium scale size, weak keeling); D. b. bithynica (small scale size, weak keeling); D. b. tristis (medium scale size, weak keeling); D. o. bischoffi comb. nov. (great scale size, strongly keeling); D. o. obscura stat. et comb. nov. (great scale size, strongly keeling); D. o. macromaculata comb. nov. (great scale size, strongly keeling); D. r. bolkardaghica (medium scale size, medium keeling); D. rudis (medium scale size, medium keeling); D. mirabilis stat. nov. (medium scale size, medium keeling.

 Şahin, 22.06.2016. ZDEU222/2016, $5 \widehat{\delta}{ }^{\top}, 8$ q q, 1 juvenile, Palandöken Mountain, Erzurum, Turkey. leg. Kamil Candan, Nurettin Beşer, Mehmet Kürşat Şahin, 01.07.2016. ZDEU119/2015, 1 §§, 3 qq, 2 qq subadults, Balık Lake, Taşlıçay, Ağrı, Turkey. leg. Kamil Candan, Elif Yıldırım Caynak, 26.07.2015. ZDEU121/2015, 2 §̃̉, 4 คq, Güzeldere Village, Hınıs, Erzurum, Turkey, leg. Kamil Candan, Elif Yıldırım Caynak, 25.07.2015.

Derivatio nominis: The specific epithet refers to Josef Friederich Schmidtler (born 1942), for his remarkable work on the knowledge of Turkish herpetofauna and its rich diversity.

Comparative diagnosis (Morphology): Darevskia josefschmidtleri sp. nov. is a medium sized species (adults SVL: $53.25-67.95 \mathrm{~mm}$). It is characterized by medium or small-sized scales with feeble keeling (even barely visible). Darevskia josefschmidtleri sp. nov. differs from D. valentini in that there is a higher number of lamellae (46-59 vs. 42-53) and dorsals (47-58 vs. 41-52); Darevskia josefschmidtleri sp. nov. males have a higher number of preanal than D. valentini ($1-3$ vs. 1) while females have different collar scores ($8-12$ vs. $7-10$) and gulars (23-31 vs. 21-29). It also differs from D. valentini in having a greater head relative length ($0.18-0.23 \mathrm{vs} .0 .16 .-0.21$) for males. Darevskia josefschmidtleri sp. nov. differs from D. spitzenbergerae spitzenbergerae stat. et comb. nov. (see below) in that there is higher number of tibials (16-24 vs. 15-19) and dorsals (48-58 vs. 44-53) for males. Also, it differs from D. spitzenbergerae spitzenbergerae in having a shorter head relative length ($0.18-0.23$ vs $0.19-0.24$). Darevskia josefschmidtleri sp. nov. differs from "Clade A" from Candan et al. (2021) (described below as D. spitzenbergerae wernermayeri ssp. nov.) in that there is a lower number of ventrals (26-29 vs. 26-31), temp 2 (2-6 vs. 4-6) in males and preanals ($1-3$ vs. 2-3) in females. Darevskia josefschmidtleri sp. nov. differs from D. valentini in that there is a lower number of maxillary (15-18 vs. 16-20) and dentary teeth (20-22 vs. 18-25). Darevskia josefschmidtleri sp. nov. differs from Clade A (D. spitzenbergerae wernermayeri ssp. nov. see below) in that there is a lower number of maxillary (15-18 vs. 19-21) and dentary teeth (20-22 vs. 23-24).

Diagnosis (Molecular): It can be distinguished from other former D. valentini populations by unique nucleotide combination located on the mitochondrial gene $C y t-b$ and nuclear loci $M C 1 R$. The consensus sequence (Cyt-b) for Darevskia josefschmidtleri sp. nov. is found in Appendix 6, together with the respective sequence for the D. valentini s . str. In this Table, the thirty simple nucleotide diagnostic characters between the consensus sequences are highlighted. Similarly, the molecular diagnostic characters for Darevskia josefschmidtleri sp. nov. regarding the nuclear loci are shown in Appendix 6.

Description of holotype: An adult male. Tail in regeneration process. Fixed with ethanol and conserved in 96\% ethanol.

Scalation: Rostral not in contact with the nostril. Single postnasal on each side. Width of frontonasal (internasal) plate subequal to length, not contact with rostral. Sutures between prefrontal plates and frontal plate straight. Parietal plates in contact with postorbital plates on each side. Supraciliar granules 9 on each side, interrupted series on right, not on left side. Supraciliar plates 6 on each side. Supralabial and sublabial plates 4 and 6 on each side, respectively. Plates in supratemporal region 3 on left, 4 on right. The first supratemporal plate large, narrow towards the back, ends bluntly. Masseteric large, in one piece on each side, separated from the first supratemporal plate by a row of small scales. Tympanic obvious, in two pieces on the left and one piece on right, separated from masseteric by three and two rows of small scales on the left and right, respectively. Eight flat and smooth collaria. Gularia 27. Ventralia contains 6 longitudinal and 28 transverse rows of plates. Preanal scale in two pieces, surrounded by 6 rows of plates. Femoral pores 21 on left, 20 on right side. Subdigital lamellae 27 on left, 26 on right. Tibial scale 19. Dorsalia 53.

Biometry: SVL 64.68 mm ., pileus width 6.79 mm , pileus length 13.27 mm , head width 8.13 mm , head length 13.14 mm . Length of forelimb 18.39 mm , length of hindlimb 27.90 mm . Anal plate width 4.69 mm , length 1.71 mm .

Coloration and pattern (in alcohol): The ground color of the dorsum is greenish brown. Dorsal tract with a wide vertebral band composed of fairly irregular transverse spots nost covering almost its complete width. Similar dark spotting is present on each side of the body (temporal or lateral band) that appears reticulated. Between these two dark spots, located both in the middle of the dorsum and flanks, a paler double line extends from the nape to the base of the tail (Appendix 5). There are few pale spots inside the reticulate on dark bands on flanks, with more in the forelimb. A few light bluish spots near the forelimb basis. Belly, along with head and neck, whitish (see photos in Appendix 5), with dark and blue spots in the outermost rows of ventrals. Background color of head plates brownish, with few scattered and small black spots on it.

Variations of paratypes: Descriptive statistics and variation range of the morphometric and scalation characters are given in Table 7. Frontonasal (internasal) rarely is in contact with rostral. Sutures between the prefrontal and
frontal are usually slanted. Parietal is rarely in contact with postorbital. Masseteric is sometimes divided into two pieces. Tight scales are feeble-keeled, smaller than dorsal ones. In one specimen, transverse dark spots on ground color combined with spots on each side, do not form two separate rows. In addition, transverse dark spots, longitudinally above ground color, are faint in ten specimens. In four samples, pale spots on the forelimb base were not blue (white). Belly, along with head and neck, yellowish in nine specimens. In fourteen samples, no spotting on head plates.

FIGURE 12. a) Darevskia spitzenbergerae wernermayeri ssp. nov. (Paratype; $n^{\circ} 12$, Male; Başeğmez Village, Çaldıran, Turkey); b) Darevskia mirabilis stat. nov. (Paratype; n ${ }^{\circ}$ 5, Female; Ovit Pass, Kaçkar Mountains, Rize, Turkey); c) Darevskia rudis bolkardaghica (Paratype; n° 1, Male; Karagöl, Ulukışla, Niğde, Central Anatolia, Turkey); d) Darevskia rudis lantzicyreni comb. nov. (n^{o} 23, male; Kümbet Village, Zara, Turkey); e) Darevskia josefschmidtleri sp. nov. (Paratype; n° 20, Male; Yukarınarlıca Village, Çatak, Van, Turkey); f) Darevskia valentini ($\mathrm{n}^{\circ} 9$, Male; Tepeler Village, Ardahan, Turkey) and temporal area of an Armenian specimen (Karvansaray, Martuni District, Armenia); g) Darevskia spitzenbergerae spitzenbergerae stat. et comb. nov. (n^{o} 1, Male; Cilo Sat Mountains, Hakkari, Turkey)- Also, temporal area of other specimen from the same locality. The new nomenclature proposed in the text is used.

Distribution: Confirmed localities draw an area around Çaldıran (Van) located in the east of Van Lake, around Balık Lake (Ağrı), Palandöken Mountain and around Çat and Hınıs (Erzurum) which is in the south of this massif, all in Turkey. Probably also in intermediate areas among these localities.

Habitat: Subalpine-like vegetation from Irano-Turanian Region, in rocky and stony areas near 2000 m or higher: 2095 m . (Çaldıran), 2270 m . (Balık Lake), 2429 m . (Palandöken), 1946 m . (Çat), 2643 m. (Hınıs). Darevskia unisexualis was found sympatric in the Palandöken Mountain, while no other reptile species were detected in the same and other localities of the area.

Comments: This new taxon seems to be the parental species that gave origin by hybridization to the parthenogenetic D. unisexualis, D. sapphirina and D. bendimahiensis according to Z-chromosome inheritance (Yanchukov et al. 2022).

Darevskia spitzenbergerae (Eiselt, Darevsky \& Schmidtler, 1992) stat. nov.

(Fig. 12g). Type Locality: Mergan Plateau, Cilo Mountain, Hakkari, Turkey.
Distribution: It is known from only two locations: Mergan Plateau, Hakkari, Turkey and Narlica Valley, Van, Turkey (this study).

Comments: It includes one of the subspecies of D. valentini previously described and a population from Narlıca Valley (called the New Clade A in Candan et al. 2021). Since they are morphologically distinct and D. s. spitzenbergerae stat. et comb. nov. is so singular in pattern, we think it may be subspecifically different.

Clade A is described as subspecies of Darevskia spitzenbergerae stat. nov.
(Appendix 5; Fig. 12a).

Synonymy/Chresonymy:

Lacerta valentini lantzicyreni; Eiselt, Darevsky \& Schmidtler, 1992. (from "Yukarı Narlıca"-sic.!-).
Darevskia valentini "Clade A"; Candan et al. (2021). (same locality as this study)
ZooBank registration (http://zoobank.org): urn:1sid:zoobank.org:act:927894FD-EEFD-450A-81D9-0A68188EDC3B.

Holotype: ZDEU123/2015 (n.3). §̉, Yukarınarlıca Village, Çatak, Van, Turkey. leg. Yusuf Kumlutaş, Çetin Ilgaz, 29.07.2015.

Paratypes: $7 \delta^{\lambda}, 10 q$. Same locality, date and collectors as holotype.
Derivatio nominis: The specific epithet refers to Dr. Werner Mayer (1943-2015), for his remarkable work on the knowledge of lacertid genera relationships and species taxonomy.

Diagnosis: Darevskia spitzenbergerae wernermayeri ssp. nov. differs from nominate form (D. s. spitzenbergerae) in having a higher number of supraciliar granules (18-31 vs. 14-23), supratemporal (4-6 vs. 3-6), ventrals (29-31 vs. 26-30) (females), preanals (1-3 vs. 1-3), tibial scales (16-21 vs. 15-19), temporal scales 1 (5-7 vs. 2-6) and temporal scales 2 (4-6 vs. 2-6). Darevskia s. wernermayeri ssp. nov. has a relatively smaller head relative length (0.180.21 vs. $0.19-0.24$). It also differs by a characteristic color pattern of the body. The main osteological diagnostic characters that differ from the nominate form can be specified as follows: The higher number of maxillary (19-21 vs. 16-18) and dentary teeth (23-24 vs. 20-23). Postorbital greater or equal than postfrontal (greater, rarely equal in D. s. spitzenbergerae).

Description of holotype: An adult male. Tail regenerated (see Appendix 5c). Fixed with ethanol and conserved in 96% ethanol.

Scalation: Rostral not in contact with the nostril. Single postnasal on each side. Width of frontonasal (internasal) plate subequal to length, not in contact with rostral. Sutures between prefrontal plates and frontal plate straight. Parietal plates in contact with postorbital plates on each side. Supraciliar granules 13 and 12, interrupted series on left, continuous on right. Supraciliar plates 6 on each side. Supralabial and sublabial plates 4 and 6 on each side, respectively. Plates in supratemporal region 6 on left, 5 on right side. The first supratemporal plate large narrows towards the back, and ends bluntly. Masseteric large, in one piece on left and two pieces on right, separated from the first supratemporal plate by three longitudinal scales on each side. Tympanic obvious, separated from masseteric by three and two rows of small scales on left and right, respectively. Nine flat collaria. Gularia 33. Ventralia contains 6 longitudinal and 28 transverse rows of plates. Preanal scale singular, surrounded by 6 rows of plates. Femoral pores 20 on each side. Subdigital lamellae 28 on each side. Tibialia 20. Dorsalia 51.

Biometry: SVL 63.57 mm . Pileus width 6.90 mm , pileus length 12.96 mm , head width 8.26 mm , head length 13.74 mm . Length of forelimb 22.02 mm , length of hindlimb 31.37 mm . Anal plate width and length are 4.12 mm and 1.84 mm , respectively.

Coloration and pattern (in alcohol): Ground color of dorsum greenish-brown, with two irregular paravertebral rows of dark spots. Similar dark spotting is present on each side of the body, that show the reminiscent of a reticulate pattern reduced to only isolated irregular spots. Between these two areas of dark spots, located both in the middle of the dorsum and flank, a paler and spot-free double strip area extends from nape to base of the tail (see photos in Appendix 5). There are few pale spots on dark bandings on the flanks, and more on the forelimb. A few spots near the basis of the forelimb are bluish. The belly, along with the head and neck, is whitish (Appendix 5). The background color of head plates is brownish, with a few scattered and small black spots. The first longitudinal row of ventral plates has dark spots on each side.

Variations of paratypes: Descriptive statistics and variation range of the morphometric and scalation characters are given in Table 8. Frontonasal rarely contacts with rostral. The suture between the prefrontal and frontal is usually slanted. The Parietal is in contact with the postorbital in general. Supraciliar granules sometimes are double rows. Tight scales are feeble-keeled. In four specimens, transverse dark spots on ground color are combined with spots on each side, do not form two separate rows. In seven samples, paler spots on the forelimb base are not blue. Belly, along with throat and neck, whitish in seven specimens. In three samples, no dotting on head plates. In fifteen samples, the first longitudinal row of ventral plates contains bluish spots on each side.

Distribution: Around Narlıca Valley, Çatak (Van) in the south of Van Lake, Turkey.

Habitat: Subalpine-like vegetation of Irano-Turanian Region, on rocky and stony areas, 2363 m . No other reptile species could be identified in the area during study.

Darevskia mirabilis Arribas, Ilgaz, Kumlutaş, Durmuş, Avcı \& Üzüm, 2013. stat. nov.

(Fig. 12b).Type Locality: Ovit Pass, Kaçkar Mountains, Rize, Turkey.
Distribution: It is known from the southern parts of Rize and Trabzon, especially around Kaçkar region.
Comments: Distinctiveness of it already mentioned in other previous genetic studies (Rato et al. 2021; Candan et al. 2021), and whose isolated presence in the Kaçkar mountains, without contact with other forms, has made its classification oscillate between rudis and cf. valentini, and that has been genetically revealed in another distant locality (Sarıkamış, Kars, Turkey), a question that will be more deeply studied.

Darevskia rudis rudis seems to be distinct from other forms that have been assigned to rudis s. lat., and that shall be considered now as nominally belonging to another taxon different from D. rudis: D. obscura stat. nov. (see below). Darevskia rudis would have as subspecies Darevskia rudis lantzicyreni (Darevsky \& Eiselt, 1967) comb. nov. (Fig. 12d) and D. r. bolkardaghica (Fig. 12c).

Darevskia bithynica, together with Darevskia b. tristis, perhaps paraphyletic and harboring more than one taxon within, or perhaps the results (paraphyly) are due to an ancient introgression that obscures its homogeneity.

Darevskia valentini (s. str.) (Fig. 12f), monotypical, without any of its former subspecies (latzicyreni or spitzenbergerae) that belong to other species or are taxa on its own.

Darevskia obscura (Lantz \& Cyrén, 1936) stat. nov., including D. obscura bischoffi comb. nov. and D. obscura macromaculata comb. nov.. The latter seems to be identical in the different analyses done and could be synonymous with obscura s. str. (almost the Turkish populations). Must be mentioned that D. obscura has been postulated as a species on its own by other authors (Gabelaia et al. 2018 - by geometric morphometrics; Tarkhnishvili et al. 2020b - by head shape morphometrics-; Gabelaia 2019).

It remains to clarify the status of the two forms of the Greater Caucasus (D. r. chechenica, and D. r. svanetica): independent from the others or probably closer to D. obscura, but not to the true D. rudis. This point has to be confirmed, however.

DISCUSSION

Phylogenetic reconstruction

The complex structure of the studied group, D. valentini, D. rudis, and their relatives, has been recognized from the first studies to the present (Lantz \& Cyren 1936; Darevsky \& Eiselt 1967; Darevsky 1967; 1972; Darevsky \& Lukina 1977; Eiselt et al. 1992; Arribas et al. 2013; Rato et al. 2021; Candan et al. 2021). This complexity has always been attractive to researchers who apply both kinds of markers, morphology and/or more recently genetics trying to solve it. Elaborated recent assessments using genetic markers point out that there are more lineages within the D. valentini/D. rudis complexes than the previously suspected (Candan et al. 2021; Rato et al. 2021). In this study, we aimed to increase the knowledge of the status of the currently recognized genetic lineages by creating the largest datasets, including a remote subspecies not studied so far - D. v. spitzenbergerae - for the first time, to use in both morphological and molecular analyses to clarify the problem. Our phylogenetic results show the presence of several monophyletic clades that reveal themselves as different species (Fig. 9). Of these distinct clades, some had been well-documented for the first time in a recently published study (Candan et al. 2021), and the authors have accepted that D. valentini s. lat. has more genetic lineages than previously suspected, two of which have been presented there as they should have to be described and named. However, two important shortcomings that we have tried to eliminate here prevented them from their taxonomic description: the lack of morphological study for diagnoses and the absence of samples of one of the up to now two unique subspecies of D. valentini (D. v. spitzenbergerae), whose study was unavoidable to make taxonomic decisions.

As seen from the tree topology obtained here, genetically divergent lineages, clades A and B, were detected as monophyletic (Fig. 9). The occurrence of these two highly divergent monophyletic lineages is not only confirmed by the tree topology but also the species delimitation analyses revealed both clades as different species, which is one of the most important factors that paved the way for the here proposed taxonomic revision. Network analyses
based on both genetic markers also supported this distinction. In $C y t-b$, all clades were placed into their unique positions and they did not share any haplotypes (Fig. 10A). In MC1R, which is a nuclear marker and has slower substitution rates, an agreement relatively with a more complex structure was showed. Clade A is represented by a single haplotype (Hap16), while clade B appears to have two haplotypes (Hap16 and Hap26) (Fig. 10B). Although these results were suggested by Candan et al. (2021), a definite conclusion could not be made due to the absence of subspecies D. v. spitzenbergerae, a problem now solved. Considering sampling data used in our phylogenetic construction, clade A consists of both D. s. spitzenbergerae from Mergan Plateau (type locality of this relevant and geographically extreme subspecies) and D. s. wernermayeri ssp. nov. from Narlica Valley as sister taxa (Fig. 9). Although the population located in Narlica Valley (Van, Turkey) is morphologically included in D. v. lantzicyreni (Eiselt et al. 1992), it is genetically more closely related to D. s. spitzenbergerae than to the former. In addition to this, the populations, which were assimilated to D. v. lantzicyreni according to morphology (Eiselt et al. 1992), represent a completely different lineage (clade B) according to genetics. Such discordant patterns called cryptic speciation are often shown in the lizards (Ahmadzadeh et al. 2013; Kornilios et al. 2018; Karakasi et al. 2021; Arribas et al. 2022).

Another major point is the status of D. r. mirabilis (clade C). This subspecies was first described by Arribas et al. (2013) from Ovit Pass, a very isolated geographic region in Kaçkar Mountains. Its phylogenetic position is obvious here and reveals that it should be a species as different as clades A and B (Fig. 9). The genetic difference of this taxon was demonstrated by two independent studies. Firstly, Rato et al. (2021) suggested that a clade, called Trabzon-Rize in their study, is genetically distinct and that it should be considered one of the four main lineages of D. rudis. Since they did not distinguish any subspecies, they could not determine that this clade belongs to D. r. mirabilis. The fact that the D. rudis specimens used in their study share the same branch with a specimen we know for certain to be D. r. mirabilis, undoubtedly proves that this clade is a new taxon and the corresponding samples of Rato et al. (2021) belong to it. Secondly, Candan et al. (2021) has also mentioned that it has isolated genetic structure and that its distribution area may be wider than expected because a datum retrieved from GenBank (Tarkhnishvili et al. 2013), which is located around Sarıkamış (Kars, Turkey), clustered with D. r. mirabilis in the same branch.

Similar to Candan et al. (2021), one of the interesting results obtained within D. valentini/D. rudis complexes is that the specimens belonging to D. r. rudis, D. r. bolkardaghica and D. v. lantzicyreni, cluster together with overlapping. This unexpected pattern makes it difficult to engage the complexity of the group, which unables to apply the current nomenclature and difficulties understanding the main processes underlying genetic variation. Considering the genetic (Fig. 9) and morphological (see results section) evidence together, the most possible scenario seems to accept that D. v. lantzicyreni is really a subspecies of D. rudis, not from D. valentini. Thus, nominal form of D. valentini is only limited to northeast Anatolia (with areas of Georgia, Armenia and Azerbaijan), while the distribution of D. rudis sensu novo, extends from the northeastern Black Sea region to the inner Anatolia and from there to the south up to the Bolkar Mountains.

Finally, the status of some former subspecies of D. rudis also inevitably needs revision. The claim that a member of this group, D. r. obscura, is different has been put forward in a previous study including phenotypic comparison (Gabelaia et al. 2018; Tarkhnishvili et al. 2020b). The phylogenetic results strongly support these morphological findings (clade G, Fig. 9). Above all, D. r. obscura has a phylogenetic position quite closely related to other two former D. rudis subspecies: D. r. bischoffi and D. r. macromaculata. Considering all these results, it seems that accepting the first described form, D. saxicola obscura Lantz \& Cyren 1936, as a species: D. obscura will contribute positively to the clarification of this group.

Morphology derived structure

Considering the studied complex group it seems that there are three large groups, which obviously coincide with the current taxonomy based on morphology (we still use here the old nomenclature to refer them). The most different includes D. bithynica s. str. and D. b. tristis, which had longer heads both concerning its width, and also about their body length, but not in their pilei because other species (especially of the former rudis complex) had smaller (in size and length) but very wide heads. Similarly, the scales that cover the upper part of the crus are small and barely keeled. Also, they had comparatively longer hindlimbs (are the more climbing, based on this characteristic). Osteologically, they have very rarely any B-Type pre-autotomic vertebrae. The sternal fontanelle is frequently reduced or absent in D. b. bithynica. Postorbital and postfrontal are subequal or the postorbital is a bit smaller (different to D. valentini,
clade B and D. v. spitzenbergerae). Squamosal and postorbital overlap commonly in half of the second's length (as also in D. r. bolkardaghica), more usually than in other forms of the group. Darevskia b. bithynica and D. b. tristis are identical in ANOSIM. This species is also recovered by genetics. Genetics indicates the possibility that tristis is paraphyletic as presently understood.

The former valentini complex has a broad overlap among the different forms in CDA. These valentini complex samples had comparatively longer limbs, comparatively smaller heads, a greater number of scales in the crus (which in this case corresponds also to smaller scale size, and are no or almost-none keeled), and less markedly, a greater number of ventral and dorsal scales. Anal index, a bit greater (scale comparatively wider) in D. valentini than in D. bithynica or the former rudis complex. One of their supposed taxa, D. v. lantzicyreni, perhaps due to its wide dispersal and the presence of isolated populations, appears somewhat heterogeneous. Darevskia v. lantzicyreni overlaps a few with D. r. bolkardaghica (in males, and even more in females, which would be in agreement with the genetic results and the taxonomic changes proposed above). In turn, D. v. lantzicyreni has the higher dorsalia among the former valentini complex and is the closer of this complex to D. rudis s. str., which would also agree with the genetic analysis (see above) and its relation as conspecific.

Darevskia r. bolkardaghica is characterized by low lamellae (in males and females), and osteologically is characterized because not infrequently shows a weakly ossified rib associated to the third vertebra (an extremely rare character, probably atavistic, associated to small and isolated populations), and the sternal fontanelle adopt singular shapes in sand-clock, irregular cordiform or trilobate in its forepart. Also its squamosal and postorbital bones overlap commonly in half of the second's length (as in D. bithynica). Genetically, it is related to D. v. lantzicyreni and D. r. rudis (all three are proposed here as subspecies of D. rudis)

Darevskia v. spitzenbergerae, clade A (here treated as the nominal ssp. of D. spitzenbergerae), and clade B (here described as a new species) (in males) and in general, as all the former valentini complex (in females) have higher ventralia counts than in D. bithynica or the former rudis complex taxa. Osteologically, this singular form (spitzenbergerae) has the interclavicle lateral branches inclined forwards (with only this model in typical D. s. spitzenbergerae) and in "clade A" (coexisting with some branches backward). Postorbital and postfrontal are subequal or the postorbital is a bit greater (as in D. valentini s. str. or clade B). Nominal taxa spitzenbergerae + clade A, and clade B are recovered as two different species by genetics. Darevskia spitzenbergerae and clade A are primitive forms, among the closely related to D. rudis (sensu novo) and their subspecies (lantzicyreni and bolkardaghica, especially this latter).

Darevskia valentini s. str. seems to be a different taxon (genetics) without its formerly assigned subspecies (is nominotypical). It has Temporalia2 a bit lower than in related taxa. In D. valentini s. str. not infrequently appear some B-Type autotomic vertebrae. Postorbital and postfrontal are subequal or the postorbital is a bit greater (as in clade B or D. spitzenbergerae).

Darevskia rudis complex is characterized by smaller dorsalia in a great part of the rudis complex (except in $D . r$. rudis -yet indicated in Arribas et al. 2013, that also is recovered as a different species in genetic analyses), than in the former valentini complex and D. bithynica ssp. (except in $D . v$. valentini that has lower scores similar to the main former rudis complex). Hindlimb relative length is also comparatively smaller when compared with the former valentini complex and even more with D. bithynica. These differences shall be considered as characteristic of D. obscura and their newly assigned subspecies, which are very few differentiated. Darevskia r. obscura and D. r. macromaculata are near the same by morphology, as suggested in Arribas et al. (2013). They are so similar in all analyses (including non-significant differences in ANOSIM) that they appear to be the same (increased pigmentation in typical Georgian macromaculata, but perhaps not in Turkish specimens, a question to be studied in future). Temporalial is somewhat smaller in D. r. macromaculata and D. r. obscura (M, F), and SVL (size) is greater in D. r. bischoffi (M, F).

Paradoxically, D. rudis s. str. is morphologically extreme and a differentiated form within "its" former complex, and is distinguished from the other former rudis complex taxa (now D. obscura sspp.) by its greater values of dorsalia. Also, it is basal to the group in UPGMA. Osteologically, in D. rudis s. str. postorbital and postfrontal are subequal or the first is smaller than the second (as in D. obscura and D. bithynica).

The two extreme populations displaced towards the south of both classical complexes (D. rudis bolkardaghica and D. valentini spitzenbergerae) result in the ones that connect morphologically the former rudis and valentini complexes. This may be because they are the most primitive in both groups, or because of an ecoclimatic convergence in their scalation. Both live on calcareous substrates (siliceous, even volcanic in the other forms), so they have a lighter background color than other forms (darker).

Concordance of genetic and morphological results

a) The classic morphological groupings/species (rudis and valentini complexes) seem to be no longer valid, due to newly discovered "intermediate" taxa, recent speciation, and multiple past and present introgression. The situation is fairly more complex than previously expected.
b) The above-mentioned morphological characteristics of D. bithynica are valid for this species.
c) The above-mentioned morphological characteristics of D. rudis complex are valid for D. obscura (and its sspp. macromaculata and bischoffi).
d) As stated above D. rudis s. str. is distinguished from the other former rudis complex taxa (hereinafter D. obscura sspp.) by its greater values of dorsalia. Also, it is basal to the group in UPGMA.
e) Darevskia r. lantzicyreni comb. nov. and D. r. bolkardaghica are subspecies of D. rudis.
f) Darevskia spitzenbergerae is a different taxon. The fourth axis of females analysis (at the limit of significance) discriminates specially clade A (D. s. wernermayeri nov. ssp.) and in a lesser degree D. v. spitzenbergerae (that genetically cluster together and are very similar in ANOVA), characterized by higher values of lamellae, preanalia and femoralia. Inside this spitzenbergerae genetic clade, preanalia is higher in clade $\mathrm{A}(D$. s. wernermayeri nov. ssp.) and strongly characterizes it (M, F) concerning near all the taxa studied here (and if the Tukey-Kramer multiple comparison test is used instead of the much stricter of Scheffe, is significantly different to all the taxa, including the nominal D. s. spitzenbergerae)
g) Darevskia mirabilis is another taxon, genetically singular, and only moderately differentiated in its morphology within the former rudis complex (morphologically seems more related to D. o. obscura or D. r. bolkardaghica -Anatolian diagonal effect? -), and longtime approached to D. valentini by its pattern, but well isolated genetically. In ANOVA, very low supraciliar granula (M, F) (especially distinctive of this taxon) and gularia (M), and higher circumanalia (M) counts are the most diagnostic characters.
h) The number (tibialia), size and keeling of the crus scales was formerly used to distinguish between the forms assigned to "rudis" and "valentini" (sensu auctt.) and is distinctive with higher counts (and smaller scales size and keeling) in the former valentini complex (and D. b. bithynica), appearing, to the contrary, the lower counts (with big size and strong keeling) in part of the former rudis complex (D. o. obscura, D. o. bischoffi and D. o. macromaculata). However, D. r. rudis, D. b. tristis, D. r. bolkardaghica and D. mirabilis appear in intermediate scores (but in scale size and aspect are more similar to the lower scored ones, the former rudis complex: D. obscura sspp.). This can be seen in Fig. 11.
There is dissociation between the results based on morphology (more similar to the former taxonomy) and those based on genetics. We believe this difference is due to three factors:
a) They are taxa of very recent differentiation. Speciation in the group is very recent, and although some lineages constitute phylogenetic species and biological species (different niches in sympatry, see for example the excellent work of Tarkhnishvili et al. 2013), their genetic distances are very low and phylogenies can be obscured also by this reason.
b) In many places, they are involved in extensive hybridization and introgression phenomena. The presence of numerous hybrids (even hybrid swarms) between the different forms, intermediate animals and that carry mitochondrial haplotypes that are not related to their nuclear reality, as can be seen in Rato et al. (2021) and Candan et al. (2021).
c) There are new taxa recently described or in the process of description in this study, some of them barely known up to now, that present intermediate, less well-defined, or mosaic characteristics, and that have been forcibly wedged between previously defined groups in former studies.
For these reasons, morphology is useful for the diagnosis of the different taxa and even the study of their intraspecific variability, but not so much for phylogenetic reconstruction.

CONCLUSION

Some geographical regions in the world are very important both in terms of species diversity and the history of the emergence of this biodiversity. Anatolia and Caucasus, which are valuable geographical regions in terms of both these phenomena, host many extraordinary living creatures, from what the genus Darevskia is one of the best examples due to its complex structure, phylogenetic radiation and the parthenogenesis phenomenon. Here,
we performed the most comprehensive morphological evaluation as well as a complete molecular phylogenetic evaluation (without any representative taxa excluded) of a group of Darevskia whose taxonomic positions have been discussed for many years. The molecular results showed that the so called rudis group (from Murphy et al. 2000) contains more genetic lineages than anticipated, one of them identified as new species (D. josefschmidtleri $\mathbf{s p}$. nov.). Morphological comparisons, on the other hand, contributed also to the definition of a new subspecific taxon (as D. s. wernermayeri ssp. nov.)

Based on both morphology and molecular markers, the taxonomic structuring of the studied group is proposed as follows:
-Darevskia valentini (Boettger, 1892)
-Darevskia josefschmidtleri sp. nov.
-Darevskia spitzenbergerae (Eiselt, Darevsky \& Schmidtler, 1992) stat. nov.
-D. spitzenbergerae spitzenbergerae (Eiselt, Darevsky \& Schmidtler, 1992) comb. nov.
-D. spitzenbergerae wernermayeri ssp. nov.
-Darevskia mirabilis Arribas, Ilgaz, Kumlutaş, Durmuş, Avcı \& Üzüm, 2013 stat. nov.
-Darevskia rudis (Bedriaga, 1886)

- D. rudis rudis (Bedriaga, 1886)
-D. rudis lantzicyreni (Darevsky \& Eiselt, 1967) comb. nov.
-D. rudis bolkardaghica Arribas, Ilgaz, Kumlutaş, Durmuş, Avcı \& Üzüm, 2013
-Darevskia obscura (Lantz \& Cyrén, 1936) stat. nov.
-D. obscura obscura (Lantz \& Cyrén, 1936) comb. nov.
-D. obscura bischoffi (Böhme \& Budak, 1977) comb. nov.
-D. obscura macromaculata (Darevsky, 1977) comb. nov.
-Darevskia bithynica (Méhely, 1909)
-D. bithynica bithynica (Méhely, 1909)
-D. bithynica tristis (Lantz \& Cyrén, 1936)

This classification can be completed in future studies with the analysis of more informative genetic markers than the single-copy nuclear markers used here, such as microsatellite DNA or genomic SNPs.

ACKNOWLEDGEMENTS

The data used in the morphology section were mostly obtained from Kamil Candan's PhD thesis, supervised by Dr. Dinçer Ayaz, which was supported by Dokuz Eylül University with project number 2017.KB.FEN.039. We thank to Dr. Mehmet Kürşat Şahin and Nurettin Beşer for their helps in the field. Finally, we wish to thank both reviewers and the editor for their contributions to improve our manuscript.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

ETHICS

To realize this study, the ethical committee document numbered 11/04/2016 was received from the Dokuz Eylül University Faculty of Medicine Animal Experiments Local Ethics Committee at the meeting dated 23.02.2016 and decided. In addition, the necessary application for the realization of the study was approved by the General Directorate of Nature Conservation and National Parks within the Ministry of Agriculture and Forestry, Turkey on 05.04.2016.

REFERENCES

Ahmadzadeh, F., Flecks, M., Carretero, M.A., Mozaffari, O., Böhme, W., Harris, D.J., Freitas, S. \& Rödder, D. (2013) Cryptic speciation patterns in Iranian Rock Lizards uncovered by integrative taxonomy. Plos One, 8 (12), 1-17. https://doi.org/10.1371/journal.pone.0080563
Arnold, E.N. (1973) Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History) Zoology, London, 25 (8), 289-366.
Arnold, E.N., Arribas, O.J. \& Carranza, S. (2007) Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430 (1), 1-86. https://doi.org/10.11646/zootaxa.1430.1.1
Arribas, O.J. (1998) Osteology of the Pyrenaean Mountain Lizards and comparison with other species of the collective genus Archaeolacerta Mertens, 1921 s.l. from Europe and Asia Minor (Squamata: Lacertidae). Herpetozoa, Wien, 11 (1/2), 4770.

Arribas, O.J. (1999) Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta Mertens, 1921, Sensu lato) and their relationships among the Eurasian lacertid radiation. Russian Journal of Herpetology, 6 (1), 1-22.
Arribas, O., Carranza, S. \& Odierna, G. (2006) Description of a new endemic species of mountain lizard from Northwestern Spain: Iberolacerta galani sp. nov. (Squamata: Lacertidae). Zootaxa, 1240 (1), 1-55. https://doi.org/10.11646/zootaxa.1240.1.1
Arribas, O.J. (2010) Intraspecific variability of the Carpetane Lizard (Iberolacerta cyreni [Müller \& Hellmich, 1937]) (Squamata: Lacertidae), with special reference to the unstudied peripheral populations from the Sierras de Avila (Paramera, Serrota and Villafranca). Bonn Zoological Bulletin, 57 (2), 197-210.
Arribas, O., Ilgaz, Ç., Kumlutaş, Y., Durmuş, S.H., Avcı, A. \& Üzüm, N. (2013) External morphology and osteology of Darevskia rudis (Bedriaga, 1886), with a taxonomic revision of the Pontic and Small-Caucasus populations (Squamata: Lacertidae). Zootaxa, 3626 (4), 401-428. https://doi.org/10.11646/zootaxa.3626.4.1
Arribas, O., Candan, K., Kurnaz, M., Kumlutaş, Y., Yıldırım-Caynak, E. \& Ilgaz, Ç. (2022) A new cryptic species of the Darevskia parvula group from NE Anatolia (Squamata, Lacertidae). Organisms Diversity \& Evolution, 22, 475-490. https://doi.org/10.1007/s13127-022-00540-4
Baran, İ., Avcı, A., Kumlutaş, Y., Olgun, K. \& Ilgaz Ç. (2021) Türkiye Amfibi ve Sürüngenleri, Palme Yayınevi, 2028, 223 pp.
Başoğlu, M. \& Baran, I. (1977) Türkiye Sürüngenleri, Kısım I, Kaplumbağa ve Kertenkeleler [Turkish Reptiles, Part I, Turtles and Lizards]. Ege Üniversitesi Kitaplar Serisi, 76, 1-219.
Blackith, R.E. \& Reyment, R.A. (1971) Multivariate morphometrics. Academic Press, London and New York, 412 pp.
Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kuhnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Muller, N. F., Ogilvie, H.A., Du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.H., Xie, D., Zhang, C., Stadler, T. \& Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15 (4), e1006650. https://doi.org/10.1371/journal.pcbi. 1006650
Böhme, W. \& Budak, A. (1977) Uber die rudis-Gruppe des Lacerta saxicola-Komplexes in der Turkei, II (Reptilia: Sauria: Lacertidae). Salamandra, 13 (3/4), 141-149.
Busschau, T., Conradie, W. \& Daniels, S.R. (2019) Evidence for cryptic diversification in a rupicolous forestdwelling gecko (Gekkonidae: Afroedura pondolia) from a biodiversity hotspot. Molecular Phylogenetics and Evolution, 139, 106549. https://doi.org/10.1016/j.ympev.2019.106549
Candan, K., Kornilios, P., Ayaz, D., Kumlutaş, Y., Gül, S., Yıldırım-Caynak, E. \& Ilgaz, Ç. (2021) Cryptic genetic structure within Valentin's Lizard, Darevskia valentini (Boettger, 1892) (Squamata, Lacertidae), with implications for systematics and origins of parthenogenesis. Systematics and Biodiversity, 19 (7), 665-681. https://doi.org/10.1080/14772000.2021.1909171
Chernomor, O., von Haeseler, A. \& Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65 (6), 997-1008. https://doi.org/10.1093/sysbio/syw037
Clarke, K.R. (1988) Detecting change in benthic community structure. In: Oger, R (Ed.), Proceedings of invited papers, $14^{\text {th }}$ International biometric conference. Namour, Belgium, pp. 131-142.
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Clement, M., Posada, D. \& Crandall, K.A. (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9 (10), 1657-1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Darevsky, I.S. \& Eiselt, J. (1967) Ein neuer Name für Lacerta saxicola mehelyi Lantz \& Cyrén 1936. Annalen des Naturhistorischen Museums in Wien, 70, 107.
Darevsky, I.S. (1967) Rock lizards of the Caucasus: systematics, ecology and phylogenesis of the polymorphic groups of

Caucasian rock lizards of the subgenus Archaeolacerta. Nauka, Leningrad. [unknown pagination]
Darevsky, I.S. (1972) Zur Verbreitung einiger Felseidechsen des Subgenus Archaeolacerta in der Türkei. Bonner Zoologische Beiträge, 23 (4), 347-351.
Darevsky, I.S. \& Lukina, G.P. (1977) Rock lizards of the Lacerta saxicola Eversmann group (Sauria, Lacertidae) collected in Turkey by Richard and Erica Clark. Proceedings of the Zoological Institute of the Academy of Sciences, U.S.S.R., 1977, 60-63.
Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London, xiv + 596 pp. https://doi.org/10.5962/bhl.title. 82303
Dobzhansky, T. (1937) Genetics and the origin of species. Columbia Biological Series No. 11. Columbia University Press, New York, xvi + 364 pp.
Drummond, A.J., Suchard, M.A., Xie, D. \& Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973. https://doi.org/10.1093/molbev/mss075
Dufresnes, C., Strachinis, I., Suriadna, N., Mykytynets, G., Cogalniceanu, D., Székely, P., Vukov, T., Arntzen, J.W., Wielstra, B., Lymberakis, P., Geffen, E., Gafny, S., Kumlutaş, Y., Ilgaz, Ç., Candan, K., Mizsei, E., Szabolcs, M., Kolenda, K., Smirnov, N., Géniez, P., Lukanov, S., Crochet, P.A., Dubey, S., Perrin, N., Litvinchuk, S.N. \& Denoël, M. (2019) Phylogeography of a cryptic speciation continuum in Eurasian spadefoot toads (Pelobates). Molecular Ecology, 28, 3257-3270. https://doi.org/10.1111/mec. 15133
Durfort, M. (1978) Tècniques de transparentat d'invertebrats i d'esquelets de vertebrats: aplicacions. Circular Institució Catalana D'Història Natural, 1, 1-9.
Eiselt, J., Darevsky, I.S. \& Schmidtler, J.F. (1992) Untersuchungen an Felseneidechsen (Lacerta saxicola komplex) in der östlichen Türkei, I. Lacerta valentini Boettger. Annalen des Naturhistorischen Museums in Wien, 93 (B), 1-18.
Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution. International Journal of Organic Evolution, 39 (4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Fraser, D.J. \& Bernatchez, L. (2001) Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Molecular Ecology, 10, 2741-2752. https://doi.org/10.1046/j.1365-294X.2001.t01-1-01411.x
Freitas, S., Vavakou, A., Arakelyan, M., Drovetski, S.V., Crnobrnja-isailović, J., Kidov, A.A., Cogălniceanu, D., Corti, C., Lymberakis, P., Harris, D.J. \& Carretero, M.A. (2016a) Cryptic diversity and unexpected evolutionary patterns in the meadow lizard, Darevskia praticola (Eversmann, 1834). Systematics and Biodiversity, 14 (2), 184-197. https://doi.org/10.1080/14772000.2015.1111267
Freitas, S., Rocha, S., Campos, J., Ahmadzadeh, F., Corti, C., Sillero, N., Ilgaz, Ç., Kumlutaş, Y., Arakelyan, M., Harris, D.J. \& Carretero, M.A. (2016b) Parthenogenesis through the ice ages: A biogeographic analysis of Caucasian rock lizards (genus Darevskia). Molecular Phylogenetics and Evolution, 102, 117-127. https://doi.org/10.1016/j.ympev.2016.05.035
Gabelaia, M., Tarkhnishvili, D. \& Adriaens, D. (2018) Use of three-dimensional geometric morphometrics for the identification of closely related species of Caucasian rock lizards (Lacertidae: Darevskia). Biological Journal of the Linnean Society, 125, 709-717. https://doi.org/10.1093/biolinnean/bly143
Gabelaia, M. (2019) Phylogeny and morphological variation in the rock lizards of the genus Darevskia. Thesis, Ilia State University and Ghent University, Tbilisi, 121 pp.
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. \& Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59 (3), 307321. https://doi.org/10.1093/sysbio/syq010
Hintze, J. (2007) NCSS, PASS and GESS.Number Cruncher Statistical Systems. Kaysville, Utah. Available from: http://www. NCSS.com (accessed 31 October 2022)
Jablonski, D., Kukushkin, O.V., Avcı, A., Bunyatova, S., Kumlutas, Y., Ilgaz, Ç., Polyakova, E., Shiryaev, K., Tuniyev, B. \& Jandzik, D. (2019) The biogeography of Elaphe sauromates (Pallas, 1814), with a description of a new rat snake species. PeerJ, 7, e6944. https://doi.org/10.7717/peerj. 6944
Jones, G.R. (2015) Species delimitation and phylogeny estimation under the multispecies coalescent. bioRxiv, 010199, 1-24. https://doi.org/10.1101/010199
Jones, G.R. (2017) Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology, 74 (1-2), 447-467. https://doi.org/10.1007/s00285-016-1034-0
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. \& Jermiin, L. S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6), 587-589.
https://doi.org/10.1038/nmeth. 4285

Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. \& Flouri, T. (2017) Multi-rate Poisson tree processes for singlelocus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33 (11), 1630-1638. https://doi.org/10.1101/063875
Karakasi, D., Ilgaz, Ç., Kumlutaş, Y., Candan, K., Güçlü, Ö., Kankılıç, T., Beşer, N., Sindaco, R., Lymberakis, P. \& Poulakakis, N. (2021) More evidence of cryptic diversity in Anatololacerta species complex Arnold, Arribas and Carranza, 2007 (Squamata: Lacertidae) and re-evaluation of its current taxonomy. Amphibia-Reptilia, 42 (2), 201-216. https://doi.org/10.1163/15685381-bja10045
Katoh, K. \& Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability, outlines version 7. Molecular Biology and Evolution, 30 (4), 772-780. https://doi.org/10.1093/molbev/mst010
Koç, H., Kutrup, B., Eroğlu, O., Bülbül, U., Kurnaz, M., Afan, F. \& Eroğlu, A.İ. (2017) Phylogenetic relationships of D. rudis (Bedriaga, 1886) and D. bithynica (Mehely, 1909) based on microsatellite and mitochondrial DNA in Turkey. Mitochondrial $D N A$, Part A, 28 (6), 814-825. https://doi.org/10.1080/24701394.2016.1197215
Koç, H., Kutrup, B., Bülbül, U. \& Kurnaz, M. (2021) The Allelic Variants in Microsatellite Loci and Phylogenetic Relationships of Darevskia rudis (Bedriaga, 1886) and D. bithynica (Méhely, 1909) Based on Mitochondrial DNA in Turkey. Russian Journal of Herpetology, 28 (2), 73-88. https://doi.org/10.30906/1026-2296-2021-28-2-73-88
Kornilios, P., Kumlutaş, Y., Lymberakis, P. \& Ilgaz, Ç. (2018) Cryptic diversity and molecular systematics of the Aegean Ophiomorus skinks (Reptilia: Squamata), with the description of a new species. Journal of Zoological Systematics and Evolutionary Research, 56 (3), 364-381. https://doi.org/10.1111/jzs. 12205
Kotsakiozi, P., Jablonski, D., Ilgaz, Ç., Kumlutaş, Y., Avcı, A., Meiri, S., Itescu, Y., Kukushkin, O., Gvoždík, V., Scillitani, G., Roussos, S.A., Jandzik, D., Kasapidis, P., Lymberakis, P. \& Poulakakis N. (2018) Multilocus phylogeny and coalescent species delimitation in Kotschy's gecko, Mediodactylus kotschyi: Hidden diversity and cryptic species. Molecular Phylogenetics and Evolution, 125, 177-187. https://doi.org/10.1016/j.ympev.2018.03.022
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018) MEGA X Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
Lantz, L.A. \& Cyrén, O. (1936) Description of Darevskia bithynica tristis. In: Contribution à la connaissance de Lacerta saxicola Eversmann. Bulletin de la Societé Zoologique de France, Paris, 61, pp. 159-181.
Legendre, P. \& Legendre, L. (1998) Numerical Ecology. Elsevier Science B. V., Amsterdam, 853 pp.
Leigh, J.W. \& Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110-1116. https://doi.org/10.1111/2041-210X. 12410
Mayr, E. (1982) Processes of speciation in animals. In: Liss, A.R.I. (Ed.), Mechanisms of speciation. Alan R. Liss, Inc., New York, New York, pp. 1-19.
Mendes, J., Salvi, D., Harris, D.J., Els, J. \& Carranza, S. (2018) Hidden in the Arabian Mountains: Multilocus phylogeny reveals cryptic diversity in the endemic Omanosaura lizards. Journal of Zoological Systematics and Evolutionary Research, 56, 395-407.
https://doi.org/10.1111/jzs. 12210
Minh, B.Q., Nguyen, M.A. \& von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30 (5), 1188-1195.
https://doi.org/10.1093/molbev/mst024
Murphy, R.W., Fu, J., MacCulloch, R. Darevsky, I.S. \& Kupriyanova, L. (2000) A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards. Zoological Journal of the Linnean Society, 130, 527-549. https://doi.org/10.1111/j.1096-3642.2000.tb02200.x
Prohl, H., Ron, S.R. \& Ryan, M.J. (2010) Ecological and genetic divergence between two lineages of Middle American tungara frogs Physalaemus (= Engystomops) pustulosus. BMC Ecology and Evolution, 10, 146. https://doi.org/10.1186/1471-2148-10-146
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. \& Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901-904. https://doi.org/10.1093/sysbio/syy032
Rato, C., Stratakis, M., Sousa-Guedes, D., Sillero, N., Corti, C., Freitas, S., Harris, D.J. \& Carretero, M.A. (2021) The more you search, the more you find: Cryptic diversity and admixture within the Anatolian rock lizards (Squamata, Darevskia). Zoologica Scripta, 50 (2), 193-209. https://doi.org/10.1111/zsc. 12462
Reid, N.M. \& Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Ecology and Evolution, 12, 196.
https://doi.org/10.1186/1471-2148-12-196
Rohlf, J. (2000) NTSYSpc. Version 2.1. UserGuide. Exeter Software ed., Setauket, New York, New York, 38 pp.
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.I., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. \& Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539-542.
https://doi.org/10.1093/sysbio/sys029
Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., GuiraoRico, S., Librado, P., Ramos-Onsins, S.E. \& SanchezGracia, A. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34 (12), 3299-3302. https://doi.org/10.1093/molbev/msx248
Seaby, R.M.H. \& Henderson, P.A. (2019) Community Analysis Package 6.0. Pisces Conservation Ltd, Lymington, 164 pp. [http://www.pisces-conservation.com]
Sindaco, R., Kornilios, P., Sacchi, R. \& Lymberakis, P. (2014) Taxonomic reassessment of Blanus strauchi (Bedriaga, 1884) (Squamata: Amphisbaenia: Blanidae), with the description of a new species from south-east Anatolia (Turkey). Zootaxa, 3795 (3), 311-326. https://doi.org/10.11646/zootaxa.3795.3.6
Sokal, R.R. \& Rohlf, J. (1969) Biometry. The principles and practice of statistics in Biological research. W.F. Freeman and C., New York, New York, 776 pp.
Stephens, M., Smith, N.J. \& Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68 (4), 978-989. https://doi.org/10.1086/319501
Stephens, M. \& Scheet, P. (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missingdata imputation. American Journal of Human Genetics, 76 (3), 449-462. https://doi.org/10.1086/428594
Şekercioğlu, Ç.H., Anderson, S., Akçay, E., Bilgin, R., Can, Ö.E., Semiz, G., Tavşanoğlu, Ç., Yökeş, M.B., Soyumert, A., İpekdal, K., Sağlam, İ.K., Yücel, M. \& Dalfes, H.N. (2011) Turkey's globally important biodiversity in crisis. Biological Conservation, 144, 2752-2769. https://doi.org/10.1016/j.biocon.2011.06.025
Tamar, K., Carranza, S., In den Bosch, H., Sindaco, R., Moravec, J. \& Meiri, S. (2015) Hidden relationships and genetic diversity: Molecular phylogeny and phylogeography of the Levantine lizards of the genus Phoenicolacerta (Squamata: Lacertidae). Molecular Phylogenetics and Evolution, 91, 86-97. https://doi.org/10.1016/j.ympev.2015.05.002
Tarkhnishvili, D. (2012) Evolutionary history, habitats, diversification, and speciation in Caucasian rock lizards. Advances in Zoology Research, 2, 79-120.
Tarkhnishvili, D., Murtskhvaladze, M. \& Gavashelishvili, A. (2013) Speciation in Caucasian lizards: Climatic dissimilarity of the habitats is more important than isolation time. Biological Journal of the Linnean Society, 109 (4), 876-892. https://doi.org/10.1111/bij. 12092
Tarkhnishvili, D., Gabelaia, M. \& Adriaens, D. (2020b) Phenotypic divergence, convergence and evolution of Caucasian rock lizards (Darevskia). Biological Journal of the Linnean Society, 130, 142-155. https://doi.org/10.1093/biolinnean/blaa021
Tarkhnishvili, D., Yanchukov, A., Şahin, M.K., Gabelaia, M., Murtskhvaladze, M., Candan, K., Galoyan, E., Arakelyan, M., Iankoshvili, G., Kumlutaş, Y., Ilgaz, Ç., Matur, F., Çolak, F., Erdolu, M., Kurdadze, S., Barateli, N. \& Anderson, C. (2020a) Genotypic similarities among the parthenogenetic rock lizards Darevskia with presumed different hybrid origins. BMC Evolutionary Biology, 20, 122. https://doi.org/10.1186/s12862-020-01690-9.
Taylor, W.R. (1967) An enzyme method of clearing and staining small vertebrates. Proceedings United States National Museum, Smithsonian Institute, 122 (3596), 1-17. https://doi.org/10.5479/si.00963801.122-3596.1
Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A. \& Minh, B.Q. (2016) W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44 (W1), 232-235. https://doi.org/10.1093/nar/gkw256
Uetz, P., Freed, P. \& Hošek, J. (2022) The Reptile Database. Available from: http://www.reptile-database.org, (accessed 10 March 2022)
Yanchukov, A., Tarkhnishvili, D., Erdolu, M., Şahin, M.K., Candan, K., Murtskhvaladze, M., Gabelaia, M., Iankoshvili, G., Barateli, N., Ilgaz, Ç., Kumlutaş, Y., Matur, F., Çolak, F., Arakelyan, M. \& Galoyan, E. (2022) Precise paternal ancestry of hybrid unisexual ZW lizards (genus Darevskia: Lacertidae: Squamata) revealed by Z-linked genomic markers. Biological Journal of the Linnean Society, 136 (2), 293-305. https://doi.org/10.1093/biolinnean/blac023
Yaşar, Ç., Çiçek, K., Mulder, J. \& Tok, C.V. (2021) The distribution and biogeography of amphibians and reptiles in Turkey. North-Western Journal of Zoology, 17 (2), e201512, 232-275.
Yousefabadi, F., Rastegar-Pouyani, E., Keikhosravi, A., Rastegar Pouyani, N., Avcı, A., Üzüm, N., Olgun, K., Kumlutaş, Y.,

Lymberakis, P., Ilgaz, Ç. \& Hosseinian Yousefkhani, S.S. (2021) An integrative approach uncovered variation within Trapelus ruderatus (Olivier, 1804) (Squamata: Agamidae) in Western Asia. Journal of Zoological Systematics and Evolutionary Research, 59, 1530-1545.
https://doi.org/10.1111/jzs. 12557
TABLE 1. Mahalanobis' distances among samples. Males below and females above diagonal.

	D. v. spitzenbergerae	$\begin{aligned} & \text { D. } v . \\ & \text { "Clade A" } \end{aligned}$	$\begin{aligned} & \text { D. v. } \\ & \text { "Clade B" } \end{aligned}$	D. v. valentini	D. v. lantzicyreni	D. b. bithynica	D. b. tristis	D. r. rudis	D. r. bischoffi	D. r. obscura	D. r. macromaculata	D. r. mirabilis	D. r. bolkardaghica
D. v. spitzenbergerae	0	1.96	3.02	3.49	1.7	8.16	9.36	4.17	6.65	4.32	4.77	3.84	3.33
D. v. "Clade A"	1.7	0	1.23	2.39	1.5	10.06	11.25	5.08	7.6	5.18	5.71	4.62	4.51
D. v. "Clade B"	1.91	0.73	0	2.56	2.43	10.87	12.07	6.04	8.78	6.36	6.87	5.81	5.73
D. v. valentini	1.44	2.29	2.37	0	3.78	10.97	11.9	7.05	8.13	5.98	6.86	5.16	5.27
D. v. lantzicyreni	1.85	1.77	1.75	3.11	0	9.48	10.79	3.63	6.89	4.44	4.69	4.13	3.88
D. b. bithynica	9.23	10.69	10.56	9.79	9.35	0	1.67	8.81	10.04	9.37	9.27	9.34	8.37
D. b. tristis	10.48	12.01	11.89	10.94	10.75	1.55	0	10.21	10.78	10.35	10.35	10.27	9.35
D. r. rudis	5.57	6.3	6.72	6.84	5.26	8.61	9.82	0	5.3	3.57	2.81	4.07	3.65
D. r. bischoffi	6.92	8.05	8.6	7.48	7.78	9.61	10.32	4.52	0	2.45	2.54	3.03	3.34
D. r. obscura	4.91	6.12	6.64	5.44	5.92	8.95	9.83	3.97	2.04	0	1.19	0.95	1.31
D. r. macromaculata	5.24	6.29	6.85	5.95	5.99	9.23	10.16	3.29	1.82	0.95	0	2.11	2.09
D. r. mirabilis	4.16	5.2	5.77	4.72	5.17	9.48	10.47	3.9	2.89	1.08	1.35	0	0.99
D. r. bolkardaghica	3.34	4.8	5.15	4.13	4.18	7.47	8.56	3.58	4.05	2.26	2.62	2.21	0

TABLE 2. Analysis of Similarity (ANOSIM) results (with 1000 randomizations). Males below and females above diagonal. The number above is the R-statistic pairwise comparison extending from 1 (perfect discrimination) to -1 (total mixing) of the two concerned samples. Below are the test probability results among each of the two populations (significant results indicated with asterisks).

	D. v. spitzenbergerae	$\begin{gathered} \text { D. } v . \\ \text { "Clade A" } \end{gathered}$	$\begin{gathered} \text { D. } v . \\ \text { "Clade B" } \end{gathered}$	D. \boldsymbol{v}. valentini	D. v. lantzicyreni	D. b. bithynica	D. b. tristis	D. r. rudis	D. r. bischoffi	D. r. obscura	$\text { D. } r \text {. }$ macromaculata	D. r. mirabilis	D. r. bolkardaghica
D. v. spitzenbergerae	0	$\begin{gathered} 0.69 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.14 \\ 0.105 \mathrm{~ns} \end{gathered}$	$\begin{gathered} 0.57 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.18 \\ 0.031 \end{gathered}$	$\begin{gathered} 0.73 \\ 0.009 * * \end{gathered}$	$\begin{gathered} 0.54 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.42 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.46 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.40 \\ 0.004 * * \end{gathered}$	$\begin{gathered} 0.52 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.43 \\ 0.003 * * \end{gathered}$	$\begin{gathered} 0.48 \\ 0.002 * * \end{gathered}$
D. v. "Clade A"	$\begin{gathered} 0.16 \\ 0.044 * \end{gathered}$	0	$\begin{gathered} 0.29 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.82 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.33 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 1 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.88 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.62 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.70 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.77 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.83 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.88 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.97 \\ 0.001 * * \end{gathered}$
D. v. "Clade B"	$\begin{gathered} 0.38 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.43 \\ 0.002 * * \end{gathered}$	0	$\begin{gathered} 0.41 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.19 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.48 \\ 0.001 \% * \end{gathered}$	$\begin{gathered} 0.69 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.60 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.62 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.62 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.72 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 * * \end{gathered}$
D. v. valentini	$\begin{gathered} 0.83 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.97 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.58 \\ 0.001 * * \end{gathered}$	0	$\begin{gathered} 0.44 \\ 0.001 \% * \end{gathered}$	$\begin{gathered} 0.64 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.82 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.79 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.63 \\ 0.001 \% * \end{gathered}$	$\begin{gathered} 0.56 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.67 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.61 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.51 \\ 0.001 * * \end{gathered}$
D. v. lantzicyreni	$\begin{gathered} 0.42 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.41 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.19 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.61 \\ 0.001 * * \end{gathered}$	0	$\begin{gathered} 0.33 \\ 0.002 \% * \end{gathered}$	$\begin{gathered} 0.60 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.42 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.51 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.54 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.57 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.65 \\ 0.001 \% * \end{gathered}$	$\begin{gathered} 0.59 \\ 0.001 * * \end{gathered}$
D. b. bithynica	$\begin{gathered} 0.60 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.75 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.56 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.90 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.34 \\ 0.001 * * \end{gathered}$	0	$\begin{gathered} -0.13 \\ 0.854 \\ n s \end{gathered}$	$\begin{gathered} 0.52 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.34 \\ 0.016 \text { * } \end{gathered}$	$\begin{gathered} 0.25 \\ 0.036 \end{gathered}$	$\begin{gathered} 0.37 \\ 0.028 * \end{gathered}$	$\begin{gathered} 0.62 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.59 \\ 0.003 * * \end{gathered}$
D. b. tristis	$\begin{gathered} 0.67 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.76 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.74 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.58 \\ 0.001 * * \end{gathered}$	$\begin{gathered} -0.005 \\ 0.743 \end{gathered}$	0	$\begin{gathered} 0.50 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.51 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.64 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.63 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.84 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.67 \\ 0.001 * * \end{gathered}$
D. r. rudis	$\begin{gathered} 0.70 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.70 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.68 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.84 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.43 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.43 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.55 \\ 0.001 * * \end{gathered}$	0	$\begin{gathered} 0.37 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.48 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.46 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.62 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.48 \\ 0.001 * * \end{gathered}$
D. r. bischoffi	$\begin{gathered} 0.61 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.68 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.61 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.55 \\ 0.001 \% * \end{gathered}$	$\begin{gathered} 0.43 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.56 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.36 \\ 0.001 * * \end{gathered}$	0	0.14	$\begin{gathered} 0.03 \\ 0.235 n s \end{gathered}$	$\begin{gathered} 0.36 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.21 \\ 0.032 * \end{gathered}$
D. r. obscura	$\begin{gathered} 0.54 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.76 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.90 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.50 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.61 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.51 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.58 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.54 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.27 \\ 0.001 * * \end{gathered}$	0	$\begin{gathered} 0.05 \\ 0.042 * \end{gathered}$	$\begin{gathered} 0.24 \\ 0.004 \text { ** } \end{gathered}$	$\begin{gathered} 0.03 \\ 0.342 n s \end{gathered}$
D. r. macromaculata	$\begin{gathered} 0.55 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.81 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.70 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.76 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.64 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.63 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.59 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.54 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.19 \\ 0.003 * * \end{gathered}$	$\begin{array}{r} -0.002 \\ 0.485 \end{array}$	0	$\begin{gathered} 0.41 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.32 \\ 0.009 * * \end{gathered}$
D. r. mirabilis	$\begin{gathered} 0.43 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.84 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.84 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.70 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.70 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.76 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.53 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.41 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.43 \\ 0.001 * * \end{gathered}$	0	$\begin{gathered} 0.25 \\ 0.012 \end{gathered}$
$\text { D. } r \text {. }$ bolkardaghica	$\begin{gathered} 0.34 \\ 0.002 * * \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.66 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.88 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.55 \\ 0.001 \text { ** } \end{gathered}$	$\begin{gathered} 0.65 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.62 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.54 \\ 0.002 \text { ** } \end{gathered}$	$\begin{gathered} 0.40 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.40 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.48 \\ 0.001 * * \end{gathered}$	$\begin{gathered} 0.35 \\ 0.005 * * \end{gathered}$	0

TABLE 3. Post-Hoc reclassification of specimens derived from CDA (males and females).

\% Correct	8	$\stackrel{1}{2}$	∞	ô O O		$\stackrel{n}{\infty}$	$\begin{aligned} & \hat{O}_{0}^{0} \\ & \text {. } \\ & . \end{aligned}$	$\begin{aligned} & \stackrel{Z}{2} \\ & \text { à } \\ & \text { à } \end{aligned}$	$\underset{\infty}{\infty}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{1}{n} \\ & \underset{\infty}{n} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \underset{W}{W} \\ & \stackrel{0}{0} \\ & \dot{\infty} \end{aligned}$	8	O \square 0 ∞ ∞
No. Correct	a	∞	三	®	$\stackrel{\infty}{+}$	\pm	ก	\cdots	¢	\bar{m}	,	$=$	∞	$\stackrel{\infty}{\infty}$
Original D. r. bolkardaghica	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	∞	∞
Original D. r. mirabilis	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	$=$	\bigcirc	\cdots
Original D. r. macromaculata	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	m	\wedge	m	\bigcirc	$\stackrel{\text { ̇ }}{ }$
Original D. r. obscura	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bar{m}	n	-	\bigcirc	∞
Original $D . r$. bischoffi	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	6	\checkmark	\bigcirc	\bigcirc	\bigcirc	
$\begin{aligned} & \text { Original } D . r \text {. } \\ & \text { rudis } \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\cdots	\bigcirc	-	\checkmark	\bigcirc	\bigcirc	$\bar{\infty}$
$\begin{aligned} & \text { Original } D . b . \\ & \quad \text { tristis } \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	∞	i	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	8
Original $D . b$. bithynica	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\pm	\sim	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Original D. v. lantzicyreni	\sim	-	\sim	\bigcirc	$\stackrel{\infty}{+}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	n
Original D. v. valentini	\bigcirc	\bigcirc	\bigcirc	m	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	m
$\begin{aligned} & \text { Original } D . v . \\ & \text { "Clade B" } \end{aligned}$	-	-	气	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\rightharpoonup}{2}$
$\begin{aligned} & \text { Original } D . v . \\ & \text { "Clade A" } \end{aligned}$	\bigcirc	∞	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	∞
Original D.v. spitzenbergerae	a	-		\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\frac{\pi}{5}$					$\begin{aligned} & \therefore \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \because \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \because \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 000 \\ & 0 \end{aligned}$		$\begin{aligned} & \because \\ & 0 \\ & \overrightarrow{0} 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		

TABLE 3. (continued)

FEMALES															$\begin{aligned} & \text { هo } \\ & \text { ᄋᄋ } \\ & \underset{\sim}{6} \end{aligned}$
Predicted D. v. spitzenbergerae	6	0	1	0	0	0	0	0	0	0	1	0	0	6	100
Predicted D. v. "Clade A"	0	10	3	0	2	0	0	0	0	0	0	0	0	10	100
Predicted D. v. "Clade B"	0	0	27	0	2	0	0	0	0	0	0	0	0	27	77.1429
Predicted D.v. valentini	0	0	1	26	1	0	0	0	0	0	0	0	0	26	100
Predicted D. v. lantzicyreni	0	0	3	0	36	0	0	4	0	0	1	0	0	36	87.8049
Predicted D. b. bithynica	0	0	0	0	0	4	4	0	0	0	0	0	0	4	100
Predicted D. b. tristis	0	0	0	0	0	0	49	0	0	0	0	0	0	49	92.4528
$\begin{aligned} & \text { Predicted } D . r . \\ & \text { rudis } \end{aligned}$	0	0	0	0	0	0	0	61	0	0	0	0	0	61	88.4058
Predicted D. r. bischoffi	0	0	0	0	0	0	0	0	74	1	0	0	0	74	88.0952
Predicted D. r. obscura	0	0	0	0	0	0	0	2	4	27	1	0	0	27	77.1429
Predicted D. r. macromaculata	0	0	0	0	0	0	0	1	0	4	24	0	0	24	88.8889
Predicted D. r. mirabilis	0	0	0	0	0	0	0	1	6	1	0	9	0	9	100
Predicted D. r. bolkardaghica	0	0	0	0	0	0	0	0	0	2	0	0	7	7	100
Total	6	10	35	26	41	4	53	69	84	35	27	9	7	360	88.67

TABLE 4. (continued)

MALES	D. v. spitzenbergerae $N=10$ 1	$\begin{gathered} \text { D.v. } \\ \text { "Clade A" } \\ \mathrm{N}=\mathbf{8} \\ \mathbf{2} \end{gathered}$	$\text { D. } v .$ "Clade B" $\mathrm{N}=\mathbf{2 0}$ 3	$\begin{gathered} \text { D. v. } \\ \text { valentini } \\ \mathrm{N}=34 \end{gathered}$ 4	D. v. lantzicyreni $\mathrm{N}=53$ 5	D. b. bithynica $\mathrm{N}=16$ 6	$\begin{gathered} \text { D. b. } \\ \text { tristis } \\ \mathrm{N}=60 \\ 7 \end{gathered}$	$\begin{gathered} \text { D. } r \\ \text { rudis } \\ \mathrm{N}=89 \\ 8 \end{gathered}$	$\begin{gathered} \text { D. } r . \\ \text { bischoffi } \\ \mathrm{N}=82 \\ \mathbf{9} \end{gathered}$	D. r. obscura $\mathrm{N}=38$ 10	D. r. macromaculata $N=24$ 11	D. r mirabilis $\mathrm{N}=17$ 12	D. r. bolkardaghica $\mathbf{N}=\mathbf{9}$ 13
TEMP1	4.5 ± 0.45	5.62 ± 0.26	5.5 ± 0.26	4.73 ± 0.15	5.67 ± 0.17	4.37 ± 0.27	4.06 ± 0.10	5.03 ± 0.12	4.37 ± 0.12	3.73 ± 0.20	3.58 ± 0.18	4.11 ± 0.39	5 ± 0.33
	2-6	5-7	4-9	3-6	4-8	2-6	2-6	2-8	2-8	2-6	2-5	2-9	4-6
TEMP2	4 ± 0.51	4.75 ± 0.31	2.9 ± 0.28	2 ± 0	3.62 ± 0.16	3.62 ± 0.32	3.23 ± 0.15	3.85 ± 0.13	3.56 ± 0.12	2.60 ± 0.18	2.70 ± 0.18	3.05 ± 0.21	4 ± 0.47
	2-6	4-6	2-6	2-2	2-6	2-6	2-6	2-6	2-6	2-6	2-4	2.4	2-6
SVL	60.14 ± 1.68	63.68 ± 1.13	62.75 ± 1.25	62.15 ± 0.96	65.86 ± 0.82	64.68 ± 0.66	63.49 ± 0.47	65.05 ± 0.49	74.30 ± 0.84	64.16 ± 0.93	63.32 ± 1.03	61.10 ± 1.30	61.40 ± 1.45
	49.95-65.24	60-67.95	50.7-76.87	51.2-71.56	53.62-79.41	60.5-68.56	52.38 -	50.72-75.5	54.4-88.66	$50.64-$	54.9-75	50.52-70.3	55.12-68.22
Pileus Index (PI)	2.03 ± 0.03	1.94 ± 0.02	2.01 ± 0.02	2.04 ± 0.02	2.06 ± 0.02	2.08 ± 0.01	$\begin{gathered} 72.84 \\ 2.13 \pm 0.01 \end{gathered}$	1.95 ± 0.01	1.98 ± 0.01	$\begin{gathered} 74.34 \\ 1.96 \pm 0.01 \end{gathered}$	1.97 ± 0.02	1.89 ± 0.03	2.01 ± 0.03
[PL/PW]	1.8-2.19	1.84-2.06	1.81-2.23	1.70-2.23	1.86-2.30	2-2.25	1.83-2.52	1.78-2-24	1.73-2.29	1.78-2.28	1.75-2.26	1.68-2.26	1.88-2.12
Head Index (HI)	1.70 ± 0.02	1.59 ± 0.01	1.67 ± 0.02	1.67 ± 0.01	1.71 ± 0.01	2.27 ± 0.03	2.38 ± 0.01	1.72 ± 0.01	1.69 ± 0.01	1.73 ± 0.01	1.69 ± 0.01	1.68 ± 0.02	1.81 ± 0.02
[HL / HW]	1.54-1.83	1.51-1.66	1.54-1.81	1.49-1.79	1.51-1.97	2.02-2.65	2.13-2.71	1.30-2	1.53-1.99	1.56-1.91	1.49-1.80	1.52-1.90	1.72-1.90
Anal Index (AI)	2.21 ± 0.04	2.23 ± 0.13	2.52 ± 0.05	2.41 ± 0.07	2.49 ± 0.05	2.29 ± 0.04	2.18 ± 0.05	2.04 ± 0.03	2.06 ± 0.03	2.00 ± 0.07	1.96 ± 0.05	2.18 ± 0.11	1.90 ± 0.05
[AW/AL]	1.93-0.04	1.96-3.1	1.84-3.01	1.69-3.22	1.7-3.66	1.86-2.55	1.66-4.89	1.36-2.87	1.31-3.06	1.42-3.65	1.50-2.39	1.77-3.15	1.62-2.13
Head Relative	0.22 ± 0.006	0.20 ± 0.003	0.20 ± 0.002	0.22 ± 0.002	0.22 ± 0.002	0.33 ± 0.003	0.34 ± 0.002	0.26 ± 0.01	0.26 ± 0.001	0.25 ± 0.003	0.25 ± 0.003	0.24 ± 0.004	0.25 ± 0.05
length (HRL)	0.19-0.24	0.18-0.21	0.18-0.23	0.18-0.24	0.19-0.26	0.29-0.35	0.28-0.36	0.21.0.28	0.21-0.31	0.21-0.28	0.22-0.27	0.21-0.26	0.23-0.269
[HL/SVL]													
Hindlimb Relative	0.46 ± 0.01	0.47 ± 0.001	0.46 ± 0.007	0.46 ± 0.01	0.50 ± 0.01	0.53 ± 0.007	0.54 ± 0.004	0.37 ± 0.004	0.35 ± 0.006	0.33 ± 0.004	0.35 ± 0.01	0.35 ± 0.01	0.35 ± 0.02
length (LRL)	0.42-0.53	0.44-0.52	0.37-0.53	0.33-0.58	0.33-0.77	0.45-0.58	0.44-0.59	0.29-0.59	0.27-0.7	0.27-0.45	0.31-0.54	0.28-0.5	0.29-0.47
[LL/SVL]													

TABLE 4. (continued)2

	F	P	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10	1-11	1-12	1-13	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	3-4	3-5	3-6	3-7	3-8	3-9	3-10	3-11
GR_S	9.65	0.000000																						**									
SUPRAC_PL	3.99	0.000007				*																											
SUPRALAB-PL	2.03	0.010209																															
SUBLAB_PL	14.6	0.000000						**											*									**	**				
COLLARIA	7.97	0.000000																															
GULARIA	18.06	0.000000																															
Supratemporal (Left)	7.43	0.000000														*																	
ventralia	56.46	0.000000					**	**	**	**	**	**	**	**	**			**	**	**	**	**	**	**	*			**	**	**	**	**	**
preanalia	8.61	0.000000														**	**	**	**	**	**	**	**	**		*							
CIRCUMANAL.	7.45	0.000000																															*
Femoralia	9.12	0.000000																															
FEMUROUTER	16.54	0.000000							*																					**			
Lamellae	19.16	0.000000			**									**		*									**	*						**	
tibialia	82.83	0.000000		**						**	**	**							*	*	**	**	**		*	*	**	**	**	**	**	**	**
DORSALIA	82.49	0.000000		**	**	**	**	**	**	**	**		**			**	**	**		**	**	**	**	**		**				**	**	**	**
TEMP1	11.89	0.000000				**													**		**	**	**	**				**	**		**	**	**
TEMP2	9.97	0.000000			**						**	**			**	**	**		**		**	**	**	**									
SVL	21.89	0.000000				**			**	**											**				**					**	**		
Pileus Index (PI) [PL/PW]	12.07	0.000000						*	*				**				**	**	**										**				
Head Index (HI)	248.44	0.000000					**	**									**	**	**	**	**	**			**			**	**				
[HL/HW]																																	
Anal Index (AI)	10.77	0.000000																											**	**	**	**	**
[AW/AL]																																	
Head Relative length (HRL) [HL/SVL]	235.17	0.000000	**	**			**	**	**	**	**	**	**	**		**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
Hindlimb Relative length (LRL) [LL/SVL]	87.50	0.000000							**	**	**	**	**	*						**	**	**	**	**	*				**	**	**	**	**

TABLE 4. (continued) 3

	3-	3-	4 -	4 -	4-	4 -	$4-$	4 -	4 -	4-	4-	5-	5-	5-	5-	5-	5-	5-	5-	6 -	6-	6-	6-	6-	6-	6-	7-	7-9	$7-$	7-	7-	7-
	12	13	5	6	7	8	9	10	11	12	13	6	7	8	9	10	11	12	13	7	8	9	10	11	12	13	8		10	11	12	13
GR_S	**				**													**							**						*	
SUPRAC_PL																																
SUPRALAB-PL																																
SUBLAB_PL												*	**								*		*	**	**		**	**	**	**	**	*
COLLARIA			**									*	**															*	*			
GULARIA			**		*	**	**						**		**	**	**	**									*					
Supratemporal			**			**	**																									
$\begin{aligned} & (\text { Left }) \\ & \text { VENTRALIA } \end{aligned}$	**	**		**	**	**	**	**	**			**	**	**	**	**	**														*	
PREANALIA																																
CIRCUMANAL.	**		**	**	**	**	**			*							**	**														
FEMORALIA			**				**																				*	**				
FEMUROUTER			**		**	**	**	**	*	**				**													*					
LAMELLAE		**	*	*	*	*	*									**			**				**			**			**			**
TIBIALIA	**	**	**	**	**	**								**	**	**	**		**			**	**	**				**	**	**		
DORSALIA	**	**	**	**	**	**							**	**	**	**	**	**	**	**		**	**	**	**	**	**	**	**	**	**	**
TEMP1	**		**		**			**	**			**	**	**	**	**	**	**									**					
TEMP2		**	**	**	**	**				**	**				**	**	**						**				**		**			
SVL			**				**								**			**				**						**				
Pileus Index (PI)	**				**	**	**	**	**	**			**	**	**	**	**	**			**	**	**	**	**		**	**	**	**	**	**
$\begin{aligned} & \text { [PL/PWl PWlex (HI) } \\ & \text { Head Index } \end{aligned}$		**		**	**	**					**	**	**						**	**	**	**	**	**	**	**	**	**	**	**	**	**
$\begin{aligned} & \text { [HL/ } \mathrm{HWl} \\ & \text { Anal Index (AI) } \end{aligned}$	**	**				**	**	**	**		**		**		**	**	**	**	**	**	**		**	**		**				**		
[AW/AL] Head Relative length (HRL)	**	**		**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
$\begin{aligned} & {[\mathrm{HL} / \mathrm{SVL}]} \\ & \text { Hindlimb } \end{aligned}$	**			*	**	**	**	**	**	**	**			**	**	**	**	**	**		**	**	**	**	**	**	**	**	**	**	**	**
Relative length (LRL) [LL/SVL]																																

TABLE 4. (continued)4

	8-9	8-10	8-11	8-12	8-13	9-10	9-11	9-12	9-13	10-11	10-12	10-13	11-12	11-13	12-13
GR_S				**				**			**			**	
SUPRAC_PL															
SUPRALAB-PL															
SUBLAB_PL															
COLLARIA	**	**	**	**	*										
GULARIA															
Supratemporal (Left)															
VENTRALIA				**				**							
PREANALIA															
CIRCUMANAL.				*			**	**		**	**				
FEMORALIA	**					**	*	**		**	**				
FEMUROUTER	*	**	*												
LAMELLAE		**			**	**			**					**	*
TIBIALIA	**	*	**			**					**		**		
DORSALIA	**	**	**	**	**										
TEMP1	**	**	**	**		**	**					**		**	
TEMP2		**	**	**		**	**					**			**
SVL	**			**		**	**	**	**						
Pileus Index (PI) [PL / PW]								**							
Head Index (HI) [HL / HW]									**					**	**
Anal Index (AI) [AW/AL]															
Head Relative length (HRL) [HL/SVL]						**		**	**						
Hindlimb Relative length (LRL) [LL/SVL]				*							**		**		

TABLE 5. Descriptive statistics and ANOVA from FEMALES. As in Table 4.

TABLE 5. (continued)

TABLE 5. (continued) 3

TABLE 5. (continued)4

TABLE 6. Condensed information about the osteological characteristics of all the rudis-group (rudis and valentini complexes, plus D. portschinskii) taxa studied. To the new specimens studied, also data from Arribas (1998) and Arribas et al. (2013) have been used. M is males, F females; A bar (/) OR A " $=$ " means equally probable states; Greater, smaller, or equal signs $(<>=)$ mean relative dispositions of bone proportions; A parenthesis "()" a rare character state or value; a double parenthesis

 (\dagger pure cruciform; $\Psi=$ directed forwards; $\pitchfork=$ directed backwards); Sternal fontanellae ($\mathrm{O}=\mathrm{oval}, \mathrm{C}=$ cordiform, $\mathrm{IC}=$ irregular cordiform, $\mathrm{IO}=\mathrm{irregular}$ oval); Sternal-xiphisternal formula (see above), Postfrontal and postorbital relative legths (see above); Postfrontal anterolateral process (presence or absence); Postorbital anteromedial process (presence/absence); Squamosal overlap with postorbital (approx. percentage of overlap).

TABLE 6. (continued)

TABLE 7. Descriptive statistics of Darevskia josefschmidtleri sp. nov. considering all the type series. N: number of samples; S.D.: Standard deviation; S.E.: Standard error of the mean; the abbreviations of characters are given in Materials and Methods.

Characters	N	Mean	Minimum	Maximum	S.D.	S.E.
GR_S (left)	57	11.74	7	16	2.17	0.29
GR_S (right)	57	11.86	6	17	2.24	0.30
SUPRAC_PL (left)	57	5.82	4	7	0.69	0.09
SUPRAC_PL (right)	57	5.81	4	7	0.55	0.07
SUPRALAB-PL (left)	57	4.05	4	5	0.23	0.03
SUPRALAB-PL (right)	57	4.05	3	5	0.29	0.04
SUBLAB_PL (left)	57	6.05	5	7	0.29	0.04
SUBLAB_PL (right)	57	6.05	5	7	0.29	0.04
COLLARIA	57	9.70	8	12	0.89	0.12
GULARIA	57	26.88	23	31	1.69	0.22
SUPRATEMPORAL (left)	57	3.77	2	6	0.71	0.09
SUPRATEMPORAL (right)	57	3.74	1	5	0.84	0.111
VENTRALIA	57	29.91	26	33	1.86	0.25
PREANALIA	57	1.53	1	3	0.73	0.10
CIRCUMANALIA	57	6.61	5	8	0.82	0.11
FEMORALIA (left)	57	18.75	14	22	1.50	0.20
FEMORALIA (right)	57	19.16	15	22	1.68	0.22
FEMUROUTER	57	3.98	3	6	0.52	0.07
LAMELLAE (left)	54	26.48	23	30	1.31	0.18
LAMELLAE (right)	55	26.36	23	30	1.41	0.19
TIBIALIA	57	20.07	16	24	1.62	0.22
DORSALIA	57	51.46	47	58	2.46	0.33
TEMP1 (left)	57	2.77	2	5	0.68	0.09
TEMP2 (left)	56	1.61	1	3	0.65	0.09
TEMP1 (right)	57	2.74	2	4	0.61	0.08
TEMP2 (right)	56	1.55	1	3	0.60	0.08
masseteric (left)	57	1.05	1	2	0.23	0.03
masseteric (right)	57	1.11	1	2	0.31	0.04
tympanic (left)	57	1.16	1	2	0.37	0.05
tympanic (right)	57	1.18	1	2	0.38	0.05
SVL	57	62.12	46.00	76.87	6.55	0.87
PW	57	6.10	5.05	7.60	0.56	0.07
PL	57	12.11	10.32	14.96	1.23	0.16
HW	57	7.33	5.82	8.95	0.72	0.10
HL	57	12.00	9.70	14.77	1.37	0.18
LL	57	27.33	20.60	36.21	3.27	0.43
AW	57	3.97	2.55	5.56	0.70	0.09
AL	57	1.97	1.15	11.99	1.39	0.18

TABLE 8. Descriptive statistics of Darevskia spitzenbergerae wernermayeri ssp. nov. considering all the type series. N: number of samples; S.D.: Standard deviation; S.E.: Standard error of the mean; the abbreviations of characters are given in Materials and Methods.

Characters	N	Mean	Minimum	Maximum	S.D.	S.E.
GR_S (left)	17	11.29	9	16	1.76	0.43
GR_S (right)	17	10.94	8	15	1.64	0.40
SUPRAC_PL (left)	17	5.12	4	6	0.70	0.17
SUPRAC_PL (right)	17	5.41	5	6	0.51	0.12
SUPRALAB-PL (left)	17	4.12	3	5	0.49	0.12
SUPRALAB-PL (right)	17	4.12	4	5	0.33	0.08
SUBLAB_PL (left)	17	6.24	6	7	0.44	0.11
SUBLAB_PL (right)	17	6.24	6	7	0.44	0.12
COLLARIA	17	9.12	9	11	0.49	0.12
GULARIA	17	27.12	24	29	1.27	0.31
SUPRATEMPORAL (left)	17	4.71	4	6	0.69	0.17
SUPRATEMPORAL (right)	17	4.82	4	6	0.64	0.15
VENTRALIA	17	29.41	26	31	1.54	0.37
PREANALIA	17	1.82	1	3	0.10	0.23
CIRCUMANALIA	17	7.35	6	9	0.70	0.17
FEMORALIA (left)	17	19.35	17	22	1.46	0.35
FEMORALIA (right)	17	19.59	18	22	1.54	0.37
FEMUROUTER	17	4.12	4	5	0.33	0.08
LAMELLAE (left)	17	26.47	24	29	1.33	0.32
LAMELLAE (right)	17	26.24	23	28	1.20	0.29
TIBIALIA	17	18.35	16	21	1.22	0.30
DORSALIA	17	49.82	44	54	2.51	0.61
TEMP1 (left)	17	2.82	2	3	0.39	0.10
TEMP2 (left)	17	2.41	2	3	0.51	0.12
TEMP1 (right)	17	2.94	2	4	0.43	0.10
TEMP2 (right)	17	2.53	2	3	0.51	0.13
masseteric (left)	17	1.29	1	2	0.47	0.11
masseteric (right)	17	1.00	1	1	0.00	0.00
tympanic (left)	17	1.06	1	2	0.24	0.06
tympanic (right)	17	1.06	1	2	0.24	0.06
SVL	17	61.27	53.25	67.95	3.59	0.87
PW	17	6.16	5.63	7.02	0.39	0.10
PL	17	11.69	10.45	13.88	0.99	0.24
HW	17	7.42	6.45	9.26	0.77	0.19
HL	17	11.69	10.33	14.00	1.07	0.26
LL	17	28.46	25.67	34.26	2.42	0.59
AW	17	3.95	3.09	4.70	0.46	0.11
AL	17	1.93	1.35	2.35	0.29	0.07

Appendix 1. Detailed information for specimens were used for morphological comparisons.

Darevskia spitzenbergerae spitzenbergerae stat. et comb. nov. 10(M), 6(F)

1. ZDEU 1/2020. $(\mathrm{N}=16)$, Mergan Plateau, Hakkari, Turkey, 15.08.2020, Leg. C. YILMAZ [Map ID: 78].

Darevskia spitzenbergerae wernermayeri ssp. nov. 8(M), 10(F)

1. ZDEU 123/2015. (N=18), Yukarınarlıca Village, Çatak, Van, Turkey, 29.07.2015, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 77].

Darevskia josefschmidtleri sp. nov. 20(M), 35(F)

1. ZDEU 108/2015. (N=4), Balık Lake, Taşlççay, Ağrı, Turkey, 19.05.2015, Leg. K. CANDAN, E. YILDIRIM CAYNAK [Map ID: 75].
2. ZDEU 121/2015. (N=6), Güzeldere Village, Hınıs, Erzurum, Turkey, 25.07.2015, Leg. K. CANDAN, E. YILDIRIM CAYNAK [Map ID: 74].
3. ZDEU 220/2016. (N=17), Başeğmez Village, Çaldıran, Van, Turkey, 24.06.2016, Leg. K. CANDAN, M.K. ŞAHİN, N. BEŞER [Map ID: 76].
4. ZDEU 221/2016. (N=18), Çirişli Village, Çat, Erzurum, Turkey, 22.06.2016, Leg. K. CANDAN, M.K. ŞAHİN, N. BEŞER [Map ID: 73].
5. ZDEU 222/2016. (N=10), Palandöken Mountain, Erzurum, Turkey, 01.07.2016, Leg. K. CANDAN, M.K. ŞAHIN, N. BEŞER [Map ID: 72].

Darevskia valentini 34(M), 25(F)

1. ZDEU 218/2016. (N=4), Aygır Lake, Susuz, Kars, Turkey, 29.06.2016, Leg. K. CANDAN, M.K. ŞAHĩN, N. BEŞER [Map ID: 67].
2. ZDEU 120/2015. ($\mathrm{N}=2$), Taşbaşı Village, Arpaçay, Kars, Turkey, 04.07.2015, Leg. K. CANDAN [Map ID: 71].
3. ZDEU 116/2016. (N=1), Lavaş Lake, Arpaçay, Kars, Turkey, 28.07.2015, Leg. K. CANDAN, E. YILDIRIM CAYNAK [Map ID: 70].
4. ZDEU 56/2016. (N=17), Boğatepe Village, Susuz, Kars, Turkey, 17.07.2016, Leg. Ç. ILGAZ, K. CANDAN [Map ID: 68].
5. ZDEU 2/2018. (N=7), Tepesuyu Village, Ardahan, Turkey, 23.04.2018, Leg. K. CANDAN, S. GÜL [Map ID: 63].
6. ZDEU 4/2018. (N=8), Tepeler Village, Ardahan, Turkey, 23.04.2018, Leg. K. CANDAN, S. GÜL [Map ID: 62].
7. ZDEU 3/2018. ($\mathrm{N}=7$), Yağmuroğlu Village, Göle, Ardahan, Turkey, 27.04.2018, Leg. K. CANDAN, S. GÜL [Map ID: 64].
8. ZDEU 1/2018. (N=2), Çatköy Plateau, Hanak, Ardahan, Turkey, 30.05.2018, Leg. K. CANDAN, S. GÜL [Map ID: 61].
9. ZDEU 108/2013. (N=5), Akdere Village, Kars, Turkey, 23.07.2013, Leg. Y. KUMLUTAŞ [Map ID: 69].
10. ZDEU 92/2013. ($\mathrm{N}=2$), Büyükçatak Village, Susuz, Kars, Turkey, 23.07.2013, Leg. Y. KUMLUTAŞ [Map ID: 65].
11. ZDEU 6/2011. (N=4), Kurugöl Village, Susuz, Kars, Turkey, 01.07.2011, Leg. Y. KUMLUTAŞ [Map ID: 66].

Darevskia mirabilis stat. nov. 17(M), 16(F)

1. ZDEU 142/2014. ($\mathrm{N}=11$), Ovit Pass, Rize, Turkey, 06.08.2014, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 42].
2. ZDEU 145/2002. ($\mathrm{N}=22$), Ovit Pass, Rize, Turkey, 06.09.2002, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, A. ÖZDEMİR [Map ID: 42].

Darevskia rudis lantzicyreni comb. nov. 53(M), 42(F)

1. ZDEU 105/2015. (N=3), Balıklı Village, Kelkit, Gümüşhane, Turkey, 05.05.2015, Leg. K. CANDAN, S. GÜL [Map ID: 27].
2. ZDEU 115/2015. (N=4), Firdevs Hatun Türbesi, Şiran, Gümüşhane, Turkey, 05.05.2015, Leg. K. CANDAN, S. GÜL [Map ID: 26].
3. ZDEU 109/2015. (N=3), Mahmatlı village, Kelkit, Gümüşhane, Turkey, 05.05.2015, Leg. K. CANDAN, S. GÜL [Map ID: 28].
4. ZDEU 107/2015. (N=8), Yukarı Kulaca Village, Şiran, Gümüşhane, Turkey, 06.05.2015, Leg. K. CANDAN, S. GÜL [Map ID: 25].
5. ZDEU 103/2015. (N=11), Kırkpınar Village, Bayburt, Turkey, 30.07.2015, Leg. K. CANDAN, E. YILDIRIM CAYNAK [Map ID: 32].
6. ZDEU 110/2015. (N=1), Bayburt, Turkey, 25.05.2015, Leg. K. CANDAN, E. YILDIRIM CAYNAK [Map ID: 33].
7. ZDEU 109/2011. ($\mathrm{N}=2$), Akçainiş, Sivas, Turkey, 09.06.2011, Leg. Y. KUMLUTAŞ [Map ID: 14].
8. ZDEU 108/2011. (N=6), Yaylacık, İmranlı, Sivas, Turkey, 10.06.2011, Leg. Y. KUMLUTAŞ [Map ID: 22].
9. ZDEU 223/2016. (N=19), Erciyes Mountain, Kayser, Turkey, 20.06.2016, Leg. K. CANDAN, M.K. ŞAHİN, N. BEŞER [Map ID: 13].
10. ZDEU 21/2017. (N=6), Otlukbeli Lake, Erzincan, Turkey, 18.05.2017, Leg. K. CANDAN, S. GÜL [Map ID: 31].
11. ZDEU 58/2014. (N=1), Doğanşar, Sivas, Turkey, 19.06.2014, Leg. Y. KUMLUTAŞ [Map ID: 17].
12. ZDEU 68/2014. ($\mathrm{N}=1$), Armutçayırı Village, Zara, Sivas, Turkey, 19.06.2014, Leg. Y. KUMLUTAŞ [Map ID: 18].
13. ZDEU 3/2011. ($\mathrm{N}=1$), Çilhoroz Village, Çayırlı, Erzincan, Turkey, 28.06.2011, Leg. Y. KUMLUTAŞ [Map ID: 29].
14. ZDEU 197/2014. ($\mathrm{N}=10$), Çamur Village, Kelkit, Gümüşhane, Turkey, 13.07.2014, Leg. Y. KUMLUTAŞ [Map ID: 30].
15. ZDEU 9/2017. (N=4), Kümbet Village, Zara, Sivas, Turkey, 18.07.2017, Leg. Y. KUMLUTAŞ [Map ID: 19].
16. ZDEU 69/2011. ($\mathrm{N}=1$), Sucak, Zara, Sivas, Turkey, 10.06.2011, Leg. Y. KUMLUTAŞ [Map ID: 20].
17. ZDEU 114/2013. (N=2), Yukarıboğaz, İmranl1, Sivas, Turkey, 20.06.2013, Leg. Y. KUMLUTAŞ [Map ID: 23].
18. ZDEU 78/2014. (N=2), Karalar Village, Suşehri, Sivas, Turkey, 11.07.2014, Leg. Y. KUMLUTAŞ [Map ID: 21]
19. ZDEU 68/2016. (N=10), Gemecik Village, Refahiye, Erzincan, Turkey, 25.06.2016, Leg. K. CANDAN [Map ID: 24].

Darevskia rudis rudis 89(M), 72(F)

1. ZDEU 200/2014. (N=10), Karacaören Village, Başçiftlik, Tokat, Turkey, 18.06.2014, Leg. Y. KUMLUTAŞ [Map ID: 16].
2. ZDEU 99/2013. (N=2), Tekkeköy, Samsun, Turkey, 02.08.2013, Leg. Y. KUMLUTAŞ [Map ID: 15].
3. 1 ZDEU 43/2014. (N=7), Şalpazar1, Trabzon, Turkey, 04.08.2014, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, K. CANDAN [Map ID: 35].
4. ZDEU 133/2014. (N=4), Zigana Pass, Gümüşhane, Turkey, 04.08.2014, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, K. CANDAN [Map ID: 34].
5. ZDEU 2/2010. ($\mathrm{N}=23$), Between Sürmene and Köprübaş1 8.km., Trabzon, Turkey, 17.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 41].
6. ZDEU 40/2010. (N=23), Maçka, Trabzon, Turkey, 18.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 40].
7. ZDEU 60/2010. (N=27), Between Akçaabat and Düzköy 14.km., Trabzon, Turkey, 18.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 38].
8. ZDEU 50/2003. (N=19), Zigana Pass, Trabzon, Turkey, 10.07.2003, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, C.V. TOK, F. İRET [Map ID: 34].
9. ZDEU 51/2003. (N=20), Between Sümele and Maçka 10.km., Trabzon, Turkey, 10.07.2003, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, C.V. TOK, F. İRET [Map ID: 39].
10. ZDEU 53/2003. ($\mathrm{N}=10$), Between Beşikdüzü and Şalpazarı 7.km., Trabzon, Turkey, 11.07.2003, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, C.V. TOK, F. İRET [Map ID: 36].
11. ZDEU 54/2003. (N=16), Between Tonya and Vakfikebir 10-15.km., Trabzon, Turkey, 11.07.2003, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, C.V. TOK, F. İRET [Map ID: 37].

Darevskia rudis bolkardaghica 9(M), 9(F)

1. ZDEU 4/2017. (N=7), Karagöl, Ulukışla, Niğde, Turkey, 13.05.2017, Leg. Ç. ILGAZ, K. CANDAN, E. YILDIRIM CAYNAK [Map ID: 12].
2. ZDEU 36/2009. (N=11), Karagöl, Ulukışla, Niğde, Turkey, 19.07.2009, Leg. Y. KUMLUTAŞ [Map ID: 12].

Darevskia obscura obscura stat. et comb. nov. 38(M), 35(F)

1. ZDEU 43/2016. (N=7), Kutul Plateau, Ardahan, Turkey, 18.07.2016, Leg. Ç. ILGAZ, K. CANDAN [Map ID: 59].
2. ZDEU 17/2010. ($\mathrm{N}=22$), Kutul Plateau, Ardahan, Turkey 14.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 59].
3. ZDEU 156/2001. (N=44), Between Geçitli Village and Bilbilen Plateau, Ardanuç, Artvin, Turkey, 06.07.2001, Leg. Y. KUMLUTAŞ, K. OLGUN, Ç. ILGAZ, A. AVCI, F. İRET [Map ID: 60].

Darevskia obscura macromaculata comb. nov. 24(M), 27(F)

1. ZDEU 35/2010. (N=51), Sahara National Park, Ardahan, Turkey, 13.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM [Map ID: 58].

Darevskia obscura bischoffi comb. nov. 82(M), 86(F)

1. ZDEU 38/2015. (N=7), Cankurtaran Pass, Hopa, Artvin, Turkey, 23.07.2015, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 51].
2. ZDEU 201/2014. (N=2), Maden village, Artvin, Turkey, 23.07.2014, Leg. Y. KUMLUTAŞ [Map ID: 57].
3. ZDEU 7/2010. (N=15), Balcılar Village, Borçka, Artvin, Turkey, 15.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 55].
4. ZDEU 6/2010. (N=16), Between Borçka and Hopa 8.km., Artvin, Turkey, 15.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 52].
5. ZDEU 31/2010. ($\mathrm{N}=10$), Between Arhavi and Güneşli Village, 2.km., Artvin, Turkey, 15.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 47].
6. ZDEU 4/2010. (N=11), Between Çamlıhemşin and Ayder Plateau 3.km., Rize, Turkey, 16.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 46].
7. ZDEU 25/2010. (N=19), Hemşin, Rize, Turkey, 16.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 45].
8. ZDEU 10/2010. ($\mathrm{N}=17$), Between İkizdere and İspir, 19.km., Rize, Turkey, 17.07.2010, Leg. Y. KUMLUTAŞ, Ç. ILGAZ, A. AVCI, N. ÜZÜM, B. ÜZÜM [Map ID: 43].
9. ZDEU 158/2001. (N=9), Between Borçka and Camili 10-21.km., Artvin, Turkey, 07.07.2001, Leg. Y. KUMLUTAŞ, K. OLGUN, Ç. ILGAZ, A. AVCI, F. İRET [Map ID: 56].
10. ZDEU 116/2002. (N=16), Between Borçka and Balcılar, Artvin, Turkey, 12.07.2002, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, A. ÖZDEMİR [Map ID: 54].
11. ZDEU 130/2002. (N=13), Between Rize and Küçükçayır 18.km., Rize, Turkey, 14.07.2002, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, A. ÖZDEMİR [Map ID: 44].
12. ZDEU 124/2002. (N=16), Between Ortacalar and Dülgerli 16-24.km., Artvin, Turkey, 13.07.2002, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, A. ÖZDEMİR [Map ID: 48].
13. ZDEU 163/2001. (N=3), Esenkıyı Village, Hopa, Artvin, Turkey, 07.07.2001, Leg. Y. KUMLUTAŞ, K. OLGUN, Ç. ILGAZ, A. AVCI, F. İRET [Map ID: 49].
14. ZDEU 105/2000. (N=6), Çamurköy, Sarp, Artvin, Turkey, 24.04.2000, Leg. K. OLGUN [Map ID: 50].
15. ZDEU 102/2002. (N=8), Between Artvin and Hatila Plateau 35.km., Artvin, Turkey, 09.07.2002, Leg. İ. BARAN, Y. KUMLUTAŞ, Ç. ILGAZ, A. ÖZDEMİR [Map ID: 53].

Darevskia bithynica bithynica 16(M), 4(F)

1. ZDEU 15/2009. (N=20), Kirazlı Plateau, Uludağ, Bursa, Turkey, 23.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 1].

Darevskia bithynica tristis 60(M), 54(F)

1. ZDEU 12/2009. ($\mathrm{N}=15$), Güzeldere Village, Düzce, Turkey, 24.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 2].
2. ZDEU 6/2009. (N=23), Samandere Waterfall, Düzce, Turkey, 24.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 3].
3. ZDEU 10/2009. (N=6), Between Yığılca and Bolu 30.km., Bolu, Turkey, 27.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 4].
4. ZDEU 14/2009. ($\mathrm{N}=11$), Between Yığılca and Alaplı 12.km., Bolu, Turkey, 27.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 5].
5. ZDEU 16/2009. (N=19), Between Zonguldak and Gökçebey 15.km., Zonguldak, Turkey, 28.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 6].
6. ZDEU 13/2009. (N=8), Yenice, Karabük, Turkey, 28.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 8].
7. ZDEU 11/2009. (N=8), Between Safranbolu and Bartın 14.km., Bartın, Turkey, 29.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 7].
8. ZDEU 17/2009. (N=5), Ulus, Bartın, Turkey, 29.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 9].
9. ZDEU 7/2009. (N=7), Amasra, Bartın, Turkey, 29.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 10].
10. ZDEU 9/2009. (N=12), Kapısuyu, Kurucaşile, Bartın, Turkey, 30.06.2009, Leg. Y. KUMLUTAŞ, Ç. ILGAZ [Map ID: 11].

Appendix 2.

Samples ID	Sex	Country	Province	Locality	Species	Subspecies
1	male	Turkey	Hakkari	Cilo Mountain	Darevskia valentini	spitzenbergerae
2-3	female	Turkey	Hakkari	Cilo Mountain	Darevskia valentini	spitzenbergerae
4	male	Turkey	Kars	Boğatepe Village, Susuz	Darevskia valentini	valentini
5	female	Turkey	Kars	Boğatepe Village, Susuz	Darevskia valentini	valentini
6	male	Turkey	Ardahan	Tepeler Village	Darevskia valentini	valentini
7	female	Turkey	Ardahan	Tepeler Village	Darevskia valentini	valentini
8-9	male	Turkey	Van	Yukarınarlıca Village, Çatak	Clade A (Candan et al. 2021)	
10-11	female	Turkey	Van	Yukarınarlıca Village, Çatak	Clade A (Candan et al. 2021)	
12	male	Turkey	Van	Başeğmez Village, Çaldıran	Clade B (Candan et al. 2021)	-
13	female	Turkey	Van	Başeğmez Village, Çaldıran	Clade B (Candan et al. 2021)	-
14	male	Turkey	Erzurum	Palandöken	Clade B (Candan et al. 2021)	-
15	female	Turkey	Erzurum	Palandöken	Clade B (Candan et al. 2021)	-
16	male	Turkey	Erzurum	Çirişli Village, Çat	Clade B (Candan et al. 2021)	-
17	female	Turkey	Erzurum	Çirişli Village, Çat	Clade B (Candan et al. 2021)	-
18	male	Turkey	Kayseri	Erciyes Mountain	Darevskia valentini	lantzicyreni
19	female	Turkey	Kayseri	Erciyes Mountain	Darevskia valentini	lantzicyreni
20	male	Turkey	Sivas	Yaylacık, İmranlı	Darevskia valentini	lantzicyreni
21	female	Turkey	Sivas	Yaylacık, İmranlı	Darevskia valentini	lantzicyreni
22	male	Turkey	Sivas	Kümbet Village, Zara	Darevskia valentini	lantzicyreni
23	female	Turkey	Sivas	Kümbet Village, Zara	Darevskia valentini	lantzicyreni
24	male	Turkey	Gümüşhane	Çamur Village, Kelkit	Darevskia valentini	lantzicyreni
25	female	Turkey	Gümüşhane	Çamur Village, Kelkit	Darevskia valentini	lantzicyreni

Appendix 3. Information regarding all the samples used in this study: accession numbers, sample and population IDs, locations, haplotypes for each nuclear marker analysed.

	$\begin{aligned} & Q \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { en } \end{aligned}$			W E On 0 0 0 0	$\begin{aligned} & \frac{2}{1} \\ & 1 \end{aligned}$	$\frac{3}{3}$	Haplotype Cyt-b		$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { הٍ } \end{aligned}$
Spit1	A	Turkey	Hakkari	Mergan	Darevskia valentini	spitzenbergerae	ON036177	ON036180	Hap86	Hap16-Hap16	This study
Spit2	A	Turkey	Hakkari	Mergan	Darevskia valentini	spitzenbergerae	ON036178	ON036181	Hap86	Hap16-Hap16	This study
Spit3	A	Turkey	Hakkari	Mergan	Darevskia valentini	spitzenbergerae	ON036179	ON036182	Hap86	Hap16-Hap16	This study
DV1	D	Turkey	Gümüşhane	Balıklı Village, Kelkit	Darevskia valentini	lantzicyreni	MN613800	MN613983	Hap64	Hap1-Hap33	Candan et al. 2021
DV2	D	Turkey	Gümüşhane	Balıklı Village, Kelkit	Darevskia valentini	lantzicyreni	MN613811	MN613994	Hap64	Нар3-Нар34	Candan et al. 2021
DV3	D	Turkey	Gümüşhane	Firdevs Hatun Türbesi, Şiran	Darevskia valentini	lantzicyreni	MN613822	MN614005	Hap73	Hap7-Нар35	Candan et al. 2021
DV4	D	Turkey	Gümüşhane	Firdevs Hatun Türbesi, Şiran	Darevskia valentini	lantzicyreni	MN613833	MN614016	Hap73	Нар3-Нар32	Candan et al. 2021
DV5	D	Turkey	Gümüşhane	Mahmatl Village, Kelkit	Darevskia valentini	lantzicyreni	MN613844	MN614027	Hap64	Нар3-Нар33	Candan et al. 2021
DV6	D	Turkey	Gümüşhane	Mahmatl Village, Kelkit	Darevskia valentini	lantzicyreni	MN613855	MN614038	Hap64	Hap1-Hap33	Candan et al. 2021
DV7	D	Turkey	Gümüşhane	Yukarıkulaca Village, Şiran	Darevskia valentini	lantzicyreni	MN613866	MN614049	Hap62	Hap32-Hap35	Candan et al. 2021

...... Continued on the next page

Appendix 3．（continued）

象	$\begin{aligned} & Q \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hat{C} \\ & e_{6}^{3} \\ & B \end{aligned}$		$\begin{aligned} & \text { F } \\ & \text { 苞 } \\ & \text { ジ } \end{aligned}$		W E On 0 0 0 0	$\begin{aligned} & \frac{2}{1} \\ & \frac{1}{1} \end{aligned}$	$\stackrel{3}{3}$	$\begin{aligned} & \text { T1 } \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{1} \end{aligned}$		©
DV8	D	Turkey	Gümüşhane	Yukarikulaca Village，Șiran	Darevskia valentini	lantzicyreni	MN613873	MN614056	Hap62	Hap1－Hap26	Candan et al． 2021
DV9	D	Turkey	Bayburt	Kırkpınar Village	Darevskia valentini	lantzicyreni	MN613874	MN614057	Hap85	Hap7－Hap14	Candan et al． 2021
DV10	D	Turkey	Bayburt	Kırkpınar Village	Darevskia valentini	lantzicyreni	MN613801	MN613984	Hap16	Hap 14－Hap33	Candan et al． 2021
DV11	D	Turkey	Bayburt	City Center	Darevskia valentini	lantzicyreni	MN613802	MN613985	Hap16	Hap7－Hap34	Candan et al． 2021
DV12	D	Turkey	Bayburt	City Center	Darevskia valentini	lantzicyreni	MN613803	MN613986	Hap16	Hap26－Hap34	Candan et al． 2021
DV13	F	Turkey	Kars	Aygrr Lake，Susuz	Darevskia valentini	valentini	MN613804	MN613987	Hap65	Hap1－Hap1	Candan et al． 2021
DV14	F	Turkey	Kars	Aygur Lake，Susuz	Darevskia valentini	valentini	MN613805	MN613988	Hap65	Hap1－Hap1	Candan et al． 2021
DV15	B	Turkey	Ağr	Balık Lake，Taşlçay	Darevskia valentini	Clade B（Candan et al．2021）	MN613806	MN613989	Hap66	Hap16－Hap16	Candan et al． 2021
DV16	B	Turkey	Ağr	Balık Lake，Taşlıçay	Darevskia valentini	Clade B（Candan et al．2021）	MN613807	MN613990	Hap66	Hap16－Hap16	Candan et al． 2021
DV17	B	Turkey	Erzurum	Güzeldere Village，Hinıs	Darevskia valentini	Clade B（Candan et al．2021）	MN613808	MN613991	Hap67	Hap16－Hap16	Candan et al． 2021
DV18	B	Turkey	Erzurum	Güzeldere Village，Himı	Darevskia valentini	Clade B（Candan et al．2021）	MN613809	MN613992	Hap67	Hap16－Hap16	Candan et al． 2021
DV19	F	Turkey	Kars	Taşbaşı Village，Arpaçay	Darevskia valentini	valentini	MN613810	MN613993	Hap68	Hap1－Hap1	Candan et al． 2021
DV20	F	Turkey	Kars	Taşbaşı Village，Arpaçay	Darevskia valentini	valentini	MN613812	MN613995	Hap69	Hap1－Hap1	Candan et al． 2021
DV21	F	Turkey	Kars	Lavaş Lake，Arpaçay	Darevskia valentini	valentini	MN613813	MN613996	Hap69	Hap1－Hap1	Candan et al． 2021
DV22	F	Turkey	Kars	Lavaş Lake，Arpaçay	Darevskia valentini	valentini	MN613814	MN613997	Hap69	Hap1－Hap1	Candan et al． 2021
DV23	F	Turkey	Kars	Boğatepe Village，Susuz	Darevskia valentini	valentini	MN613815	MN613998	Hap69	Hap1－Hap1	Candan et al． 2021
DV24	F	Turkey	Kars	Boğatepe Village，Susuz	Darevskia valentini	valentini	MN613816	MN613999	Hap69	Hap1－Hap1	Candan et al． 2021
DV25	A	Turkey	Van	Yukarınarlıca Village，Çatak	Darevskia valentini	Clade A（Candan et al．2021）	t MN613817	MN614000	Hap70	Hap16－Hap16	Candan et al． 2021
DV26	A	Turkey	Van	Yukarınarlıca Village，Çatak	Darevskia valentini	Clade A（Candan e al．2021）	$t \text { MN613818 }$	MN614001	Hap70	Hap16－Hap16	Candan et al． 2021
DV27	B	Turkey	Van	Başeğmez Village，Çaldıran	Darevskia valentini	Clade A（Candan e al．2021）	t MN613819	MN614002	Hap71	Hap16－Hap16	Candan et al． 2021
DV28	B	Turkey	Van	Başeğmez Village，Çaldıran	Darevskia valentini	Clade A（Candan e al．2021）	t MN613820	MN614003	Hap71	Hap16－Hap16	Candan et al． 2021
DV29	B	Turkey	Erzurum	Çirişli Village，çat	Darevskia valentini	Clade A（Candan et al．2021）	t MN613821	MN614004	Hap72	Hap1－Hap1	Candan et al． 2021
DV30	B	Turkey	Erzurum	Çirişli Village，Çat	Darevskia valentini	Clade A（Candan et al．2021）	$t \text { MN613823 }$	MN614006	Hap72	Hap16－Hap26	Candan et al． 2021
DV31	B	Turkey	Erzurum	Palandöken	Darevskia valentini	Clade A（Candan e al．2021）	$t \mathrm{MN} 613824$	MN614007	Hap74	Hap16－Hap16	Candan et al． 2021
DV32	D	Turkey	Sivas	Akçainiş	Darevskia valentini	lantzicyreni	MN613825	MN614008	Hap75	Hap1－Hap3	Candan et al． 2021
DV33	D	Turkey	Sivas	Akçainis	Darevskia valentini	lantzicyreni	MN613826	MN614009	Hap75	Hap1－Hap3	Candan et al． 2021
DV34	D	Turkey	Sivas	Yaylacık，İmranlı	Darevskia valentini	lantzicyreni	MN613827	MN614010	Hap75	Hap1－Hap1	Candan et al． 2021
DV35	D	Turkey	Sivas	Yaylacık，İmranlı	Darevskia valentini	lantzicyreni	MN613828	MN614011	Hap75	Нар3－Hap31	Candan et al． 2021
DV36	D	Turkey	Kayseri	Erciyes Mountain	Darevskia valentini	lantzicyreni	MN613829	MN614012	Hap76	Hap1－Hap1	Candan et al． 2021
DV37	D	Turkey	Kayseri	Erciyes Mountain	Darevskia valentini	lantzicyreni	MN613830	MN614013	Hap77	Hap1－Hap1	Candan et al． 2021
DV38	B	Turkey	Van	Başeğmez Village，Çaldıran	Darevskia valentini	Clade B（Candan et al．2021）	MN613831	MN614014	Hap71	Hap16－Hap16	Candan et al． 2021
DV39	D	Turkey	Sivas	Yaylacık，İmranlı	Darevskia valentini	lantzicyreni	MN613832	MN614015	Hap75	Hap1－Hap1	Candan et al． 2021
DV40	F	Turkey	Kars	Aygır Lake，Susuz	Darevskia valentini	valentini	MN613834	MN614017	Hap65	Hap1－Hap1	Candan et al． 2021
DV41	F	Turkey	Kars	Aygrr Lake，Susuz	Darevskia valentini	valentini	MN613835	MN614018	Hap65	Hap1－Hap1	Candan et al． 2021
DV42	B	Turkey	Ağrı	Balık Lake，Taşlıçay	Darevskia valentini	Clade B（Candan et al．2021）	MN613836	MN614019	Hap66	Hap16－Hap16	Candan et al． 2021
DV43	B	Turkey	Ağrı	Balık Lake，Taşlıçay	Darevskia valentini	Clade B（Candan et al．2021）	MN613837	MN614020	Hap66	Hap16－Hap16	Candan et al． 2021
DV44	B	Turkey	Erzurum	Çirişli Village，Çat	Darevskia valentini	Clade B（Candan et al．2021）	MN613838	MN614021	Hap72	Hap16－Hap26	Candan et al． 2021
DV45	B	Turkey	Erzurum	Güzeldere Village，Hinıs	Darevskia valentini	Clade B（Candan et al．2021）	MN613839	MN614022	Hap67	Hap16－Hap26	Candan et al． 2021
DV46	B	Turkey	Erzurum	Güzeldere Village，Himıs	Darevskia valentini	Clade B（Candan et al．2021）	MN613840	MN614023	Hap67	Hap16－Hap16	Candan et al． 2021
DV47	A	Turkey	Van	Yukarnarlıca Village，Çatak	Darevskia valentini	Clade A（Candan et al．2021）	MN613841	MN614024	Hap78	Hap16－Hap16	Candan et al． 2021
DV48	A	Turkey	Van	Yukarınarlıca Village，Çatak	Darevskia valentini	Clade A（Candan et al．2021）	MN613842	MN614025	Hap70	Hap16－Hap16	Candan et al． 2021

．．．．．．Continued on the next page

Appendix 3．（continued）

象	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{Q} \\ & \frac{8}{E} \\ & \frac{b}{4} \end{aligned}$		$\begin{aligned} & \text { F } \\ & \text { 苞 } \\ & \text { シ } \end{aligned}$	$\begin{aligned} & =\frac{0}{0} \\ & \frac{0}{0} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \frac{2}{1} \\ & \frac{1}{1} \end{aligned}$	$\frac{3}{2}$	Haplotype Cyt-b		©
DV49	F	Turkey	Kars	Boğatepe Village，Susuz	Darevskia valentini	valentini	MN613843	MN614026	Hap69	Hap1－Hap1	Candan et al． 2021
DV50	B	Turkey	Van	Başeğmez Village，Çaldıran	Darevskia valentini	Clade B（Candan et al．2021）	MN613845	MN614028	Hap71	Hap 16－Hap16	Candan et al． 2021
DV51	F	Turkey	Kars	Taşbaşı Village，Arpaçay	Darevskia valentini	valentini	MN613846	MN614029	Hap69	Hap1－Hap1	Candan et al． 2021
DV52	F	Turkey	Kars	Akdere Village	Darevskia valentini	valentini	MN613847	MN614030	Hap69	Hap1－Hap1	Candan et al． 2021
DV53	D	Turkey	Erzincan	Otlukbeli Lake	Darevskia valentini	lantzicyreni	MN613848	MN614031	Hap64	Hap1－Hap31	Candan et al． 2021
DV54	D	Turkey	Sivas	Doğanşar	Darevskia valentini	lantzicyreni	MN613849	MN614032	Hap79	Hap34－Hap36	Candan et al． 2021
DV55	D	Turkey	Sivas	Armutçayırı Village，Zara	Darevskia valentini	lantzicyreni	MN613850	MN614033	Hap80	Hap3－Hap36	Candan et al． 2021
DV56	F	Turkey	Kars	Büyükçatak Village，Susuz	Darevskia valentini	valentini	MN613851	MN614034	Hap69	Hap1－Hap1	Candan et al． 2021
DV57	F	Turkey	Kars	Kurugöl Village，Susuz	Darevskia valentini	valentini	MN613852	MN614035	Hap69	Hap1－Hap1	Candan et al． 2021
DV58	D	Turkey	Erzincan	Çilhoroz Village，Çayrlı	Darevskia valentini	lantzicyreni	MN613853	MN614036	Hap64	Hap3－Hap33	Candan et al． 2021
DV59	D	Turkey	Kayseri	Erciyes Mountain	Darevskia valentini	lantzicyreni	MN613854	MN614037	Hap76	Hap1－Hap1	Candan et al． 2021
DV60	D	Turkey	Kayseri	Erciyes Mountain	Darevskia valentini	lantzicyreni	MN613856	MN614039	Hap77	Hap1－Hap1	Candan et al． 2021
DV61	D	Turkey	Gümüşhane	Çamur Village，Kelkit	Darevskia valentini	lantzicyreni	MN613857	MN614040	Hap81	Hap1－Hap1	Candan et al． 2021
DV62	D	Turkey	Gümüşhane	Çamur Village，Kelkit	Darevskia valentini	lantzicyreni	MN613858	MN614041	Hap64	Hap3－Hap33	Candan et al． 2021
DV63	D	Turkey	Gümüşhane	Çamur Village，Kelkit	Darevskia valentini	lantzicyreni	MN613859	MN614042	Hap64	Hap1－Hap34	Candan et al． 2021
DV64	D	Turkey	Erzincan	Otlukbeli Lake	Darevskia valentini	lantzicyreni	MN613860	MN614043	Hap64	Hap3－Hap31	Candan et al． 2021
DV65	D	Turkey	Erzincan	Otlukbeli Lake	Darevskia valentini	lantzicyreni	MN613861	MN614044	Hap64	Hap3－Hap31	Candan et al． 2021
DV66	F	Turkey	Ardahan	Tepesuyu Village	Darevskia valentini	valentini	MN613862	MN614045	Hap69	Hap1－Hap1	Candan et al． 2021
DV67	D	Turkey	Sivas	Kümbet Village，Zara	Darevskia valentini	lantzicyreni	MN613863	MN614046	Hap75	Hap1－Hap1	Candan et al． 2021
DV68	D	Turkey	Sivas	Sucak，Zara	Darevskia valentini	lantzicyreni	MN613864	MN614047	Hap75	Hap1－Hap1	Candan et al． 2021
DV69	D	Turkey	Sivas	Yukarıboğaz，İmranlı	Darevskia valentini	lantzicyreni	MN613865	MN614048	Hap82	Hap 1－Hap37	Candan et al． 2021
DV70	D	Turkey	Sivas	Karalar Village，Suşehri	Darevskia valentini	lantzicyreni	MN613867	MN614050	Hap80	Hap1－Hap31	Candan et al． 2021
DV71	D	Turkey	Erzincan	Gemecik Village，Refahiye	Darevskia valentini	lantzicyreni	MN613868	MN614051	Hap83	Hap1－Hap3	Candan et al． 2021
DV72	F	Turkey	Ardahan	Tepesuyu Village	Darevskia valentini	valentini	MN613869	MN614052	Hap69	Hap1－Hap1	Candan et al． 2021
DV73	F	Turkey	Ardahan	Tepeler Village	Darevskia valentini	valentini	MN613870	MN614053	Hap69	Hap1－Hap1	Candan et al． 2021
DV74	F	Turkey	Ardahan	Yağmuroğlu Village，Göle	Darevskia valentini	valentini	MN613871	MN614054	Hap69	Hap1－Hap1	Candan et al． 2021
DV75	F	Turkey	Ardahan	Çatköy Plateau，Hanak	Darevskia valentini	valentini	MN613872	MN614055	Hap84	Hap1－Hap1	Candan et al． 2021
DRbo76	D	Turkey	Niğde	Karagöl，Ulukışla	Darevskia rudis	bolkardaghica	MN613787	MN613971	Hap59	Hap1－Hap 1	Candan et al． 2021
DRbo77	D	Turkey	Niğde	Karagöl，Ulukışla	Darevskia rudis	bolkardaghica	MN613788	MN613972	Hap59	Hap1－Hap1	Candan et al． 2021
DRbo78	D	Turkey	Niğde	Karagöl，Ulukışla	Darevskia rudis	bolkardaghica	MN613789	MN613973	Hap59	Hap1－Hap28	Candan et al． 2021
DRr80	D	Turkey	Tokat	Karacaören Village，Baş̧̧iftlik	Darevskia rudis	rudis	MN613793	MN613977	Hap61	Hap 1－Hap30	Candan et al． 2021
DRr81	D	Turkey	Tokat	Karacaören Village，Baş̧ciflik	Darevskia rudis	rudis	MN613794	MN613978	Hap61	Hap1－Hap31	Candan et al． 2021
DRr82	D	Turkey	Samsun	Tekkeköy	Darevskia rudis	rudis	MN613795	MN613979	Hap6	Нар3－Нар3	Candan et al． 2021
DRr83	D	Turkey	Trabzon	Şalpazarı	Darevskia rudis	rudis	MN613796	MN613980	Hap62	Hap32－Hap32	Candan et al． 2021
DRr84	D	Turkey	Trabzon	Zigana Pass	Darevskia rudis	rudis	MN613797		Hap63		Candan et al． 2021
DRbi85	G	Turkey	Artvin	Maden Village，Şarşat	Darevskia rudis	bischoffi	MN613785	MN613969	Hap28	Hap21－Hap29	Candan et al． 2021
DRbi86	G	Turkey	Artvin	Cankurtaran Pass，Hopa	Darevskia rudis	bischoffi	MN613786	MN613970	Hap28	Hap1－Hap3	Candan et al． 2021
DRo87	G	Turkey	Artvin	Kutul Plateau，Ardanuç	Darevskia rudis	obscura	MN613792	MN613976	Hap30	Hap3－Hap16	Candan et al． 2021
DRma88	G	Turkey	Artvin	Sahara Forest，Şavşat	Darevskia rudis	macromaculata	MN613790	MN613974	Hap43	Нар3－Нар3	Candan et al． 2021
DRmi89	C	Turkey	Erzurum	Ovit，İspir	Darevskia rudis	mirabilis	MN613791	MN613975	Hap60	Hap 16－Hap16	Candan et al． 2021
5250	E	Turkey	north－eastern Anatolia		Darevskia rudis		MH271036		Hap1		Rato et al． 2021

．．．．．．Continued on the next page

Appendix 3. (continued)

	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \stackrel{O}{E} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { ت} \\ & 0 \\ & \text { en } \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { 会 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { Ne } \\ & \text { O. } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{1}{2} \\ & \frac{1}{2} \end{aligned}$	$\frac{3}{3}$	$\begin{aligned} & \text { T } \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{2}{1} \\ & 0 \end{aligned}$		
5577	D	Turkey	north-eastern		Darevskia rudis		MH271046		Hap2		Rato et al. 2021
5543	D	Turkey	Anatolia north-eastern		Darevskia rudis		MH271066		Hap2		Rato et al. 2021
DB10043	F	Armenia	Anatolia Gegharkunik		Darevskia valentini		MW142902	MW142683	Hap3	Hap1-Hap2	Rato et al. 2021
DB653	F	Armenia			Darevskia valentini		MW142903		Hap3		Rato et al. 2021
DB4557	F	Armenia	Gegharkunik		Darevskia valentini		MW142904	MW142682	Hap27	Hap2-Hap2	Rato et al. 2021
DB5249	G	Turkey	north-eastern		Darevskia rudis		MW142905	MW142732	Hap28	Hap1-Hap3	Rato et al. 2021
DB5252	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142906	MW142701	Hap28	Нар3-Нар3	Rato et al. 2021
DB5280	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142907	MW142743	Hap28	Hap3-Hap13	Rato et al. 2021
DB5283	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142908	MW142703	Hap28	Нар3-Hap3	Rato et al. 2021
DB5300	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142909	MW142744	Hap28	Hap3-Hap13	Rato et al. 2021
DB5451	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142910	MW142747	Hap28	Hap3-Hap13	Rato et al. 2021
DB5485	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142911	MW142721	Hap28	Нар3-Нар3	Rato et al. 2021
DB5396	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142912	MW142746	Hap40	Hap3-Hap13	Rato et al. 2021
DB5418	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142913	MW142751	Hap41	Hap20-Hap21	Rato et al. 2021
DB5513	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142914	MW142755	Hap41	Нар3-Hap24	Rato et al. 2021
DB5263	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142915	MW142769	Hap30	Hap12-Hap12	Rato et al. 2021
DB5272	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142916	MW142770	Hap30	Hap3-Hap 12	Rato et al. 2021
DB5479	G	Turkey	Anatolia north-eastern Anatolia		Darevskia rudis		MW142917	MW142757	Hap43	Нар3-Hap16	Rato et al. 2021
DB12041	D	Turkey	Anatolia		Darevskia valentini		MW142918		Hap5		Rato et al. 2021
DB12128	D	Turkey	Anatolia		Darevskia valentini		MW142919		Hap5		Rato et al. 2021
DB12129	D	Turkey	Anatolia		Darevskia valentini		MW142920		Hap7		Rato et al. 2021
DB16245	D	Turkey	Ordu		Darevskia rudis		MW142921		Hap8		Rato et al. 2021
DB16270	D	Turkey	Ordu		Darevskia valentini		MW142922	MW142725	Hap11	Hap3-Hap4	Rato et al. 2021
DB16278	D	Turkey	Ordu		Darevskia valentini		MW142923	MW142694	Hap11	Hap1-Hap5	Rato et al. 2021
DB16471	D	Turkey	Ordu		Darevskia rudis		MW142924	MW142756	Hap23	Нар3-Hap10	Rato et al. 2021
DB16472	D	Turkey	Ordu		Darevskia rudis		MW142925	MW142726	Hap24	Hap3-Hap4	Rato et al. 2021
DB16473	D	Turkey	Ordu		Darevskia rudis		MW142926	MW142731	Hap25	Hap1-Hap3	Rato et al. 2021
DB16393	D	Turkey			Darevskia valentini		MW142927		Hap16		Rato et al. 2021
DB16397	D	Turkey			Darevskia valentini		MW142928	MW142729	Hap16	Hap7-Hap8	Rato et al. 2021
DB16396	D	Turkey			Darevskia valentini		MW142929	MW142686	Hap16	Hap1-Hap7	Rato et al. 2021
DB12061	D	Turkey	Anatolia		Darevskia rudis		MW142930	MW142696	Hap6	Нар3-Hap3	Rato et al. 2021
DB12117	D	Turkey	Anatolia		Darevskia rudis		MW142931	MW142697	Hap6	Нар3-Hap3	Rato et al. 2021
DB16258	D	Turkey	Erzurum		Darevskia valentini		MW142932	MW142687	Hap9	Hap1-Hap1	Rato et al. 2021
DB16259	D	Turkey	Erzurum		Darevskia valentini		MW142933		Hap9		Rato et al. 2021
DB5318	D	Turkey	north-eastern		Darevskia rudis		MW142934	MW142735	Hap9	Hap 14-Hap 14	Rato et al. 2021
DB16262	D	Turkey	Anatolia Erzurum		Darevskia valentini		MW142935	MW142688	Hap10	Hap1-Hap1	Rato et al. 2021
DB5729	D	Turkey	north-eastern		Darevskia rudis		MW142936	MW142790	Hap57	Hap26-Hap26	Rato et al. 2021
DB5302	D	Turkey	Anatolia north-eastern		Darevskia rudis		MW142937	MW142734	Hap35	Hap1-Hap14	Rato et al. 2021
DB5323	D	Turkey	Anatolia north-eastern		Darevskia rudis		MW142938	MW142691	Hap2	Hap1-Hap1	Rato et al. 2021
DB5514	D	Turkey	Anatolia north-eastern		Darevskia rudis		MW142939	MW142692	Hap2	Hap1-Hap1	Rato et al. 2021
DB5459	D	Turkey	Anatolia north-eastern Anatolia		Darevskia rudis		MW142940	MW142785	Hap35	Hap1-Hap1	Rato et al. 2021

Appendix 3. (continued)

	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ت0 } \\ & \text { e. } \\ & \stackrel{0}{6} \end{aligned}$		$\begin{aligned} & \text { W } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{6} \end{aligned}$		$\frac{?}{\tilde{j}}$	$\begin{aligned} & \frac{3}{2} \\ & \frac{1}{2} \end{aligned}$			
DB5768	D	Turkey	north-eastern		Darevskia rudis		MW142941		Hap58		Rato et al. 2021
DB5812	D	Turkey	Anatolia north-eastern Anatolia		Darevskia rudis		MW142942	MW142754	Hap58	Hap1-Hap28	Rato et al. 2021
DB16432	D	Turkey	Ordu		Darevskia rudis		MW142943		Hap17		Rato et al. 2021
DB16467	D	Turkey	Ordu		Darevskia rudis		MW142944	MW142730	Hap20	Hap1-Hap3	Rato et al. 2021
DB16468	D	Turkey	Ordu		Darevskia rudis		MW142945	MW142689	Hap21	Hap1-Hap1	Rato et al. 2021
DB16469	D	Turkey	Ordu		Darevskia rudis		MW142946	MW142762	Hap22	Hap4-Нар9	Rato et al. 2021
DB16460	D	Turkey	Ordu		Darevskia rudis		MW142947	MW142727	Hap19	Hap1-Hap4	Rato et al. 2021
DB10162	E	Turkey	north-eastern		Darevskia rudis		MW142948	MW142695	Hap4	Нар3-Нар3	Rato et al. 2021
DB5353	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142949	MW142713	Hap 1	Hap3-Hap3	Rato et al. 2021
DB5270	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142950	MW142702	Hap31	Нар3-Нар3	Rato et al. 2021
DB5307	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142951	MW142706	Hap31	Нар3-Нар3	Rato et al. 2021
DB5393	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142952	MW142772	Hap31	Hap3-Hap15	Rato et al. 2021
DB5320	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142953		Hap31		Rato et al. 2021
DB5392	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142954	MW142714	Hap31	Нар3-Нар3	Rato et al. 2021
DB5346	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142955	MW142710	Hap38	Hap3-Hap3	Rato et al. 2021
DB5345	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142956	MW142709	Hap37	Hap3-Hap3	Rato et al. 2021
DB5415	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142957		Hap45		Rato et al. 2021
DB5274	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142958	MW142771	Hap32	Hap3-Hap12	Rato et al. 2021
DB5298	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142959	MW142705	Hap32	Нар3-Нар3	Rato et al. 2021
DB5493	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142960	MW142723	Hap32	Нар3-Нар3	Rato et al. 2021
DB5341	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142961	MW142708	Hap36	Hap3-Hap3	Rato et al. 2021
DB5434	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142962	MW142715	Hap47	Нар3-Нар3	Rato et al. 2021
DB5281	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142963	MW142777	Hap33	Hap3-Hap11	Rato et al. 2021
DB5828	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142964	MW142780	Hap33	Hap11-Hap11	Rato et al. 2021
DB5284	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142965	MW142704	Hap34	Нар3-Нар3	Rato et al. 2021
DB5340	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142966	MW142707	Hap34	Нар3-Нар3	Rato et al. 2021
DB5505	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142967		Hap56		Rato et al. 2021
DB5262	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142968	MW142775	Hap29	Hap3-Hap11	Rato et al. 2021
DB5497	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142969	MW142781	Hap54	Hap11-Hap23	Rato et al. 2021
DB5494	E	Turkey	Anatolia north-eastern Anatolia		Darevskia rudis		MW142970	MW142784	Hap53	Hap11-Hap22	Rato et al. 2021
DB16273	E	Turkey	Sinop		Darevskia rudis		MW142971		Hap12		Rato et al. 2021
DB16458	E	Turkey	Sinop		Darevskia rudis		MW142972	MW142761	Hap18	Hap3-Hap9	Rato et al. 2021
DB16275	E	Turkey	Sinop		Darevskia rudis		MW142973	MW142699	Hap13	Нар3-Нар3	Rato et al. 2021
DB16337	E	Turkey	Bartun		Darevskia rudis		MW142974	MW142700	Hap14	Hap3-Hap3	Rato et al. 2021
DB16339	E	Turkey	Bartun		Darevskia rudis		MW142975	MW142765	Hap15	Hap3-Hap6	Rato et al. 2021
DB16481	E	Turkey	Kastamonu		Darevskia rudis		MW142976	MW142766	Hap26	Hap3-Hap6	Rato et al. 2021
DB16336	E	Turkey	Bartun		Darevskia rudis		MW142977	MW142763	Hap14	Hap3-Hap6	Rato et al. 2021
DB5480	E	Turkey	north-eastern		Darevskia rudis		MW142978	MW142719	Hap50	Hap3-Hap3	Rato et al. 2021
DB5484	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142979	MW142773	Hap50	Hap 15-Hap15	Rato et al. 2021
DB5482	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142980	MW142720	Hap51	Hap3-Нар3	Rato et al. 2021
DB5260	G	Turkey	Anatolia north-eastern Anatolia		Darevskia rudis		MW142982		Hap28		Rato et al. 2021

Appendix 3. (continued)

$\begin{aligned} & \text { N } \\ & \text { 暑 } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \hat{O} \\ & e_{0}^{3} \\ & \overrightarrow{8} \end{aligned}$			$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{C}{6} \end{aligned}$		$\begin{aligned} & \hat{2} \\ & \frac{1}{5} \end{aligned}$	$\stackrel{3}{3}$			
DB5342	G	Turkey	north-eastern		Darevskia rudis		MW142983	MW142733	Hap28	Hap1-Hap3	Rato et al. 2021
DB5344	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142984	MW142745	Hap28	Hap3-Hap13	Rato et al. 2021
DB5401	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142985		Hap28		Rato et al. 2021
DB5402	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142986	MW142748	Hap28	Hap3-Hap13	Rato et al. 2021
DB5443	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142987	MW142752	Hap28	Hap1-Hap21	Rato et al. 2021
DB5445	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142988	MW142753	Hap28	Hap3-Hap21	Rato et al. 2021
DB5470	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142989	MW142750	Hap28	Hap13-Hap13	Rato et al. 2021
DB5403	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142990	MW142749	Hap41	Hap3-Hap13	Rato et al. 2021
DB5613	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142991	MW142693	Hap41	Hap1-Hap1	Rato et al. 2021
DB5395	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142992	MW142740	Hap30	Нар3-Hap3	Rato et al. 2021
DB5412	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142993	MW142759	Hap44	Hap16-Hap16	Rato et al. 2021
DB5411	G	Turkey	Anatolia north-eastern		Darevskia rudis		MW142994	MW142789	Hap43	Hap13-Hap19	Rato et al. 2021
DB5409	D	Turkey	Anatolia north-eastern		Darevskia rudis		MW142995	MW142736	Hap35	Hap1-Hap17	Rato et al. 2021
DB5404	C	Turkey	Anatolia north-eastern		Darevskia rudis		MW142996	MW142758	Hap42	Hap1-Hap16	Rato et al. 2021
DB5410	C	Turkey	Anatolia north-eastern		Darevskia rudis		MW142997	MW142760	Hap42	Hap16-Hap18	Rato et al. 2021
DB5337	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142998		Hap31		Rato et al. 2021
DB5456	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW142999		Hap48		Rato et al. 2021
DB5349	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143000	MW142738	Hap32	Нар3-Hap3	Rato et al. 2021
DB5394	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143001	MW142739	Hap32	Hap3-Hap3	Rato et al. 2021
DB5466	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143002	MW142718	Hap49	Hap3-Hap3	Rato et al. 2021
DB5279	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143003	MW142776	Hap33	Hap3-Hap11	Rato et al. 2021
DB5397	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143004	MW142778	Hap33	Hap11-Hap11	Rato et al. 2021
DB5518	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143005	MW142782	Hap33	Hap3-Hap25	Rato et al. 2021
DB5743	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143006	MW142774	Hap34	Hap3-Hap27	Rato et al. 2021
DB5816	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143007	MW142724	Hap56	Нар3-Hap3	Rato et al. 2021
DB5504	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143008	MW142779	Hap54	Hap11-Hap11	Rato et al. 2021
DB5419	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143009		Hap46		Rato et al. 2021
DB5503	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143010	MW142783	Hap55	Hap23-Hap23	Rato et al. 2021
DB5512	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143011	MW142741	Hap50	Нар3-Hap3	Rato et al. 2021
DB5487	E	Turkey	Anatolia north-eastern		Darevskia rudis		MW143012	MW142722	Hap52	Нар3-Нар3	Rato et al. 2021
DB5350	E	Turkey	Anatolia north-eastern Anatolia		Darevskia rudis		MW143016	MW142711	Hap39	Hap3-Hap3	Rato et al. 2021

Appendix 4. Sequence divergences, as \% uncorrected genetic distance values (p-distances), among the species of studied group for mitochondrial Cyt-b (below diagonal) and nuclear MC1R (above diagonal). Values in diagonal are genetic divergences within each species ($C y t-b / M C 1 R$).

Species	1	2	3	4	5	6	7
1. A (D. spitzenbergerae)	$\mathbf{0 . 3 / 0 . 0}$	0.1	0.1	0.5	0.5	0.3	0.5
2. B (D. josefschmidtleri)	4.6	$\mathbf{0 . 7 / 0 . 1}$	0.1	0.4	0.5	0.3	0.5
3. C (D. mirabilis)	5.8	4.5	$\mathbf{0 . 2 / 0 . 2}$	0.4	0.5	0.3	0.5
4. D (D. rudis)	5.2	6.0	4.3	$\mathbf{2 . 4 / 0 . 2}$	0.2	0.2	0.3
5. E (D. bithynica)	6.1	5.4	4.1	4.6	$\mathbf{2 . 2 / 0 . 1}$	0.2	0.3
6. F (D. valentini)	5.3	5.8	3.6	3.2	3.5	$\mathbf{0 . 1 / 0 . 0}$	0.2
7. G (D. obscura)	4.4	6.1	3.8	3.6	3.7	1.6	$\mathbf{0 . 4 / \mathbf { 0 . 3 }}$

Appendix 5a. Holotype specimen of Darevskia josefschmidtleri sp. nov. A) dorsal and B) ventral view.

Appendix 5b. The habitat of Darevskia josefschmidtleri sp. nov.

Appendix 5c. Holotype specimen of Darevskia spitzenbergerae wernermayeri ssp. nov. A) dorsal and B) ventral view.

Appendix 5d. A) The habitat of Darevskia spitzenbergerae wernermayeri ssp. nov. B) A free specimen in its natural state.

Appendix 6a. The consensus Cyt-b sequences of the new species which are presented in this study with currently recognized D. valentini. The diagnostic molecular characters are highlighted (yellow background: differences compared with D. valentini).

Darevskia josefschmidtleri sp. nov.

Tattgatcttccaaccccatccaatatctctgcctgatgaaactttggatcgctattagggctctgccttattattcaaaccattacaggcctt tttctagccatacactatactgcagacattctgtccgcattttcatctattgcccacatccatcgagacgttcaacatgggtggttaattcgta acctacacgctaacggcgcatccttcttcttcatttgcatttatcttcacattggacgaggcctgtactatggttcctatacctacactgaaac ctgaaacattggaattattctactcttcctagtaatagccacagcctttataggctatgtcctaccctgaggacaaatatccttttgaggggcc accgtcatcactaatcttctctctgcagtaccctatgcaggctcaacccttgtagagtgaatttgaggtggctttgcggttgataatgcaacct taacccgattctttacccttcattttatacttccttttattatcatgggtacttcaatagtccatttactattcctccatgaaacaggttcaaa taaccccgcaggccttaactccaactcagataaaatcccattccatccctactactcctacaaagatcttttaggggccctcaccatgctaaca ggtctcctcttcctagccctcttttcacccaacctcctgggagatccagaaaa

Darevskia valentini

Abstract

Tattgatcttccaaccccatcaaacatctctgcctgatgaaattttggatcgctattaggactctgccttattatccaaaccattacaggcctt ttcctagccatgcactatactgcagacattctatccgcattttcatctattgcccatatccatcgagacgttcaacacggatgattaatccgta acctacacgctaacggcgcatccctattcttcatctgcatttaccttcacattggacgaggcctgtactatggttcttatacctacactgaaac ctgaaacattgggattattctactcctcctagtaatagccacagcctttataggctatgtcctaccctgaggacaaatatccttttgaggggcc accgtcatcactaatcttctctctgcagtaccctacgcaggctcaacccttgtagaatgaatttgaggtggatttgcggttgataatgcaacct taacccgattctttacccttcactttatacttccttttattattataggcacttcaacagtccacctactattcctccatgaaacaggttcaaa taacccogcaggccttaactctaattcagataaaattccattccacccctactattcctacaaagatctcttaggagccctcaccatgctaaca ggcctcctcttcctagccctcttttcacccaacctcctaggagacccagaaaa

Appendix 6b. The molecular diagnostic characters for D. josefschmidtleri sp. nov. compared with D. valentini regarding the nuclear locus. Numbers refer to the position of the aligned loci.

Locus	Diagnostic characters with position in alignment of the reference sequence	
	Darevskia josefschmidtleri $\mathbf{\text { sp. nov. }}$	Darevskia valentini
$M C 1 R$	$63 \mathrm{G} ; 84 \mathrm{G}$	$63 \mathrm{~A} ; 84 \mathrm{C}$

