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Abstract
Reptiles are good objects for studying the evolution of sex determination, since they have different sex 
determination systems in different lineages. Lacertid lizards have been long-known for possessing ZZ/
ZW type sex chromosomes. However, due to morphological uniformity of lacertid chromosomes, the Z 
chromosome has been only putatively cytologically identified. We used lampbrush chromosome (LBC) 
analysis and FISH with a W-specific probe in Eremias velox (Pallas, 1771) to unequivocally identify the 
ZW bivalent and investigate its meiotic behavior. The heterochromatic W chromosome is decondensed at 
the lampbrush stage, indicating active transcription, contrast with the highly condensed condition of the 
lampbrush W chromosomes in birds. We identified the Z chromosome by its chiasmatic association with 
the W chromosome as chromosome XIII of the 19 chromosomes in the LBC karyotype. Our findings 
agree with previous genetic and genomic studies, which suggested that the lacertid Z chromosome should 
be one of the smaller macrochromosomes.
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Introduction

Reptiles represent a good model system for studying the evolution of sex determi-
nation, since different reptiles possess different sex determination systems. In some 
groups of reptiles (e.g., crocodiles, some turtles, some geckos), the sex of the offspring 
is determined by the temperature of egg incubation (TSD, temperature sex determi-
nation) (Viets et al. 1993). In other groups, various genetic sex determination (GSD) 
systems are found, ranging from GSD without heteromorphic sex chromosomes to 
prominently heteromorphic sex chromosome systems, some of which originated inde-
pendently in different lineages from different ancestral autosomal pairs (Pokorná and 
Kratochvíl 2016). In some cases, different sex determination systems occur even in 
closely related species (Koubová et al. 2014, Gamble et al. 2015).

Several reptile lineages have sex chromosome systems common to the whole 
family or infraorder. These lineages include iguanas (Pleurodonta, or Iguanidae 
sensu lato) (Rovatsos et al. 2014), advanced snakes (Caenophidia) (Rovatsos et 
al. 2015), monitor lizards (Varanidae) and probably the whole anguimorph lizard 
group (Rovatsos et al. 2019), and lacertid lizards (Lacertidae) (Rovatsos et al. 2016a, 
b; see also Srikulnath et al. 2014). Comparative and evolutionary cytogenetics and 
genomics can determine the identities of different reptile sex chromosomes, and 
their homologs or syntenic chromosome regions in other animals’ genomes (Deakin 
and Ezaz 2019).

Lacertids have a ZZ/ZW (female heterogametic) sex chromosome system. Their 
sex chromosomes were discovered in the early 1970s and have since been extensively 
studied (Ivanov and Fedorova 1973, Olmo et al. 1986, 1987, Odierna et al. 1993, 
Pokorná et al. 2011, Giovannotti et al. 2018). The W chromosome of lacertids is 
highly degenerate, and therefore can be easily identified in the karyotypes of most spe-
cies by its size and/or differential staining and/or repetitive DNA content (Capriglione 
et al. 1994, Pokorná et al. 2011, Matsubara et al. 2015), although its exact size and 
DNA content vary strongly across species.

The lacertid Z chromosome is more difficult to identify. Lacertids typically have 
18 pairs of extremely acrocentric or subtelocentric macrochromosomes, gradually de-
creasing in length, and a pair of microchromosomes (2n=38). The macrochromosomes 
can be roughly divided into two size groups: larger chromosomes 1–10 and smaller 
chromosomes 11–18 (Srikulnath et al. 2014). Differential staining techniques like G-
banding, which gives chromosome-specific banding patterns in mammals, generally 
work poorly on reptiles.

Early studies yielded contradictory identifications of the lacertid “Z chromosome”: 
it appeared as one of the largest chromosomes in some ideograms, and as one of the 
small chromosomes in others (Olmo et al. 1986, Odierna et al. 1993). Srikulnath et al. 
(2014) identified a putative Z chromosome of Lacerta agilis Linnaeus, 1758 as chro-
mosome 5, based on Hoechst staining patterns. Recent works by Giovannotti et al. 
(2017) and Schmid et al. (2019) showed putative Z chromosomes of Acanthodactylus 
erythrurus (Schinz, 1933) and Lacerta trilineata Bedriaga, 1886, identified by FISH 
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with a telomeric probe and immunofluorescent localization of 5-methylcytosine, re-
spectively, as small chromosomes.

Z-linked genes of many lacertid species were identified using transcriptome analy-
sis and qPCR to detect genome regions with low coverage specific to one sex (Rovatsos 
et al. 2016a). Orthologues of all genes identified in various species are located in two 
microchromosomes in Anolis carolinensis Voigt, 1832 (Kichigin et al. 2016). Rovatsos 
et al. therefore suggested that the lacertids share the same Z chromosome, which is 
probably small. However, they did not visualize it directly. Therefore, the Z chromo-
somes of lacertids have not yet been unequivocally identified cytologically.

In our study, we rely on the existence of a chiasmatic association between the Z 
chromosome and the easily detectable W chromosome in meiotic prophase I. To visu-
alize the sex bivalent, we obtained lampbrush chromosome (LBC) preparations from 
the rapid racerunner (Eremias velox (Pallas, 1771)). LBCs represent a specific condition 
of meiotic chromosomes which is found in maturing oocytes of birds, reptiles, fishes, 
and amphibians (Callan 1986). They are widely used in amphibian and bird cytoge-
netics. LBC spreads from lacertids have been reported before (Lukina 1994), but the 
sex chromosomes were not identified. The W chromosome of E. velox was previously 
studied by Pokorná et al. (2011). It is relatively large, but totally heterochromatic 
and harbours many satellite repeat sequences. To confirm the identification of the sex 
bivalent, we performed FISH with a microdissected probe of the W chromosome, 
obtained from the mitotic metaphase plate.

Material and methods

Samples and DNA barcoding

Two adult and two juvenile E. velox were obtained from private keepers. The adults 
were used for LBC preparation, and the juveniles were used for fibroblast cultures. All 
manipulations with live animals and euthanasia were approved by the Saint Petersburg 
State University Ethics Committee (statement #131-03-2) and the Institute of Mo-
lecular and Cellular Biology Ethics Committee (statement #01/18 from 05.03.2018). 
To confirm the species identity, we carried out DNA barcoding. DNA was extracted 
from ethanol-preserved blood of one of the adult specimens by the conventional phe-
nol-chloroform technique (Sambrook et al. 1989). Primers and PCR conditions for 
the amplification of the fragment of the mitochondrial COI gene were as described 
earlier (Nagy et al. 2012). After PCR, the products were purified by electrophoresis in 
1% agarose gel, cut from the gel and extracted by a commercial DNA gel extraction 
kit (BioSilica, Novosibirsk, Russia). The amplicons were Sanger sequenced using the 
BigDye3.1 reagent (ThermoFisher Scientific, USA), and the sequence was processed 
using MEGA7 (https://megasoftware.net). Then the sequence was analyzed using the 
distance-based and tree-based identification tools of the BOLD v.4 database (Ratnas-
ingham and Hebert 2007; http://boldsystems.org/).
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Lampbrush chromosome preparation

LBCs of E. velox were manually dissected from previtellogenic and early vitellogenic 
oocytes (each ovary contained 15–16 such oocytes) using the standard avian lampbrush 
technique described by Saifitdinova et al. (2017) with slight modifications: namely, 
MgCl2 was excluded from the buffer solutions and EDTA was added to a final con-
centration of 0.01% to better disrupt the oocyte nucleus content. After centrifugation, 
preparations were fixed in 2% paraformaldehyde, then in 50% and in 70% ethanol. 
After dehydration in 96% ethanol, preparations were air-dried and mounted in anti-
fade medium (1–1.2% DABCO, 2× SSC, 50% glycerol) with DAPI (50 ng/mL). After 
acquiring the DAPI and phase contrast images, the preparations were washed in 2× 
SSC, dehydrated in ethanol series (70%, 80%, 96%), air-dried and subjected to FISH.

Cell cultures and metaphase chromosome preparation

Primary fibroblast cell lines were established in the Laboratory of Animal Cytogenetics, 
the Institute of Molecular and Cellular Biology, Russia, using enzymatic treatment of 
tissues as described previously (Stanyon and Galleni 1991, Romanenko et al. 2015). 
All cell lines were deposited in the IMCB SB RAS cell bank (“The general collection of 
cell cultures”, 0310-2016-0002). Metaphase chromosome spreads were prepared from 
chromosome suspensions obtained from early passages of primary fibroblast cultures as 
described previously (Yang et al. 1999, Graphodatsky et al. 2000, 2001).

Microdissection and FISH

Candidate chromosomes were manually microdissected from the Giemsa-stained 
metaphase plates using an Olympus IX-51 microscope equipped with an Eppendorf 
Transferman NK2 micromanipulator. Since the W chromosome does not have specific 
morphological features, we dissected 26 chromosomes of appropriate size from 3 meta-
phase plates. The dissected chromosomes were amplified and labelled with biotin- and 
digoxigenin-dUTP (Roche) using the commercial GenomePlex Whole Genome Am-
plification (WGA-1) kit (Sigma). The probes obtained were checked and characterized 
by FISH on metaphase chromosome preparations as described in Liehr et al. (2017). 
The recognized W chromosome-specific probe was used for FISH on LBCs, which was 
carried out as described above, omitting the RNAse and pepsin treatment stages.

Microscopy and image processing

DAPI and phase contrast images were acquired with a Leica DM4000B micro-
scope installed at the “Chromas” Resource Centre, Saint Petersburg. The FISH 
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preparations were analyzed with an Axioplan 2 Imaging microscope (Carl Zeiss) 
equipped with a CCD camera (CV M300, JAI), CHROMA filter sets, and the 
ISIS4 image processing package (MetaSystems GmbH). The brightness and con-
trast of all images were enhanced using Corel PaintShop Photo Pro X6 (Corel 
Corp). The lengths of the LBCs were measured using MicroMeasure 3.3 software 
(Reeves 2001).

Results

The DNA sequence (GenBank accession number MK558359) showed that the speci-
mens analyzed belong to the “eastern” clade of E. velox (the nominative subspecies 
E. velox velox (Pallas, 1771)). The mitotic karyotype of the lizards studied was typi-
cal of Lacertidae and was in agreement with previous studies (Kupriyanova and Ar-
ronet 1969; Pokorná et al. 2011). It consisted of 38 uniarmed chromosomes gradu-
ally decreasing in length. The W chromosome was DAPI-positive, and one of the 
microdissected probes showed a very strong hybridization signal on it (Fig. 1). It also 
gave several additional hybridization signals in the telomeres and centromeres of some 
autosomes, but no other chromosome showed a hybridization signal across its whole 
length. This probe was concluded to be W-specific.

The contents of the oocyte nuclei after the removal of the nuclear envelope 
formed a dense ball, and its full dispersal was more difficult to achieve than with 
birds and amphibians. Thus, most LBC sets showed insufficient spreading, and 
only one finely spread and complete chromosome set was obtained. The lampbrush 
karyotype of E. velox consisted of 19 bivalents, with the bivalent XIX (the only mi-
crochromosome) significantly smaller than the others (Suppl. material 1: Fig. S1). 
This agrees with the mitotic karyotype. The bivalents typically had one or two ter-
minal or subterminal chiasmata. The total number of chiasmata per spread was 
estimated as 35 to 38. Interestingly, the microchromosomal bivalent (XIX) had 
two chiasmata.

Although LBCs were isolated from previtellogenic oocytes, prominent lateral loops 
were absent on most bivalents, which is in accordance with a previous observation 
made in lacertids by Lukina (1994). This fact probably reflects that the oocytes which 
are large enough for LBC preparations are at relatively late diplotene stages in small 
lizards (Lukina 1994). In one of the bivalents, the homologues were different in length 
and chromatin state. One of the homologues consisted of dense chromomeres, re-
sembling other chromosomes. The other homologue was decondensed and showed 
long chromatin loops. The W-specific probe labelled the decondensed homologue, 
thus confirming that this is the sex bivalent (Fig. 2). The sex bivalent had only a single 
chiasma, which was located terminally, suggesting a physically very short pseudoauto-
somal region. The measurements of the relative lengths of the LBCs showed that the Z 
chromosome is chromosome XIII in the lampbrush karyotype, thus belonging to the 
fraction of small chromosomes (Fig. 3).
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Figure 1. FISH with the microdissected W-specific probe on mitotic chromosomes of Eremias velox 
A DAPI (blue), W-specific probe (red) B DAPI channel separately. Arrowhead indicates W chromosome. 
Scale bar: 10 μm.

Figure 2. FISH with the microdissected W-specific probe on lampbrush sex bivalent of Eremias velox. 
A DAPI (blue), W-specific probe (red) B DAPI channel separately. Scale bar: 15 μm.

Figure 3. Ideogram of lampbrush karyotype of Eremias velox. Red indicates Z chromosome. X axis indi-
cates size ranks. Y axis indicates relative length.
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Discussion

For many years, amphibian and avian LBCs have been serving as a spectacular model 
for studying chromosome organization and genome functioning. In squamate reptiles, 
which also have a hypertranscriptional type of oogenesis, LBCs have scarcely been 
studied before. The initial descriptions of LBCs of Lacerta agilis, Zootoca vivipara (Li-
chtenstein, 1823), Darevskia armeniaca (Méhely, 1909) and Podarcis tauricus (Pallas, 
1814) were made by Lukina (1994). However, no full karyotypes were described and 
the sex chromosomes were not identified. We are the first to describe the complete 
lacertid karyotype in the lampbrush form, and identify the sex bivalent by a molecular 
cytogenetic approach.

We noted above that most lampbrush bivalents had one or two chiasmata. The 
observed number exceeds the mean numbers of recombination nodules in male 
meiosis in Darevskia Arribas, 1999, identified by immunolocalization of SYCP3 and 
MLH1 proteins at pachytene, which equaled 24–29 in different species (Spangen-
berg et al. 2017, 2019). In particular, the occurrence of two chiasmata, like those 
observed in bivalent XIX (Fig. 2), is extremely rare in the microchromosomes of male 
lizards (Lisachov et al. 2017, 2019). This suggests the occurrence of more crossovers 
in female than male meiosis in lacertids (heterochiasmy). Different types of heterochi-
asmy, including more crossovers in one sex than in another, and/or different crossover 
localizations, are known in many species (Mank 2009). However, since our sample 
size is limited to one spread, more data are required to draw firm conclusions about 
crossover numbers. The terminal and sub-terminal localization of most chiasmata is 
also consistent with the previously obtained data on lacertid lizards and many other 
animal species (Mézard et al. 2015).

The decondensed state of the heterochromatic W chromosome in E. velox con-
trasts with the lampbrush sex bivalents of birds, in which the heterochromatic W chro-
mosome is much more condensed than the Z and autosomes (Solovei et al. 1993). 
Numerous lateral loops indicate that the W chromosome of E. velox is transcriptionally 
active at the lampbrush stage. Due to the transcriptional activity of LBCs, an enormous 
amount of RNA is synthesized in the oocyte nucleus, mainly of sequences that do not 
encode proteins, e.g. transposable and some satellite repeated sequences (Gaginskaya 
et al. 2009). These transcripts could have functions in regulatory mechanisms involved 
in embryonic development, epigenetic processes, maintaining chromatin structure, or 
other functions (Gaginskaya et al. 2009). More detailed analysis of sex chromosome 
behavior in meiosis in E. velox and other lacertids is required to determine whether the 
high transcriptional activity of the W chromosome is common to all lacertids, what 
these transcripts represent and their biological roles, what is the extent of “degenera-
tion” and heterochromatinization of the W chromosome, and its possible “junk” re-
petitive sequences accumulated.

This study is the first unequivocal cytological identification of a lacertid lizard Z 
chromosome. The size ranks of LBCs do not always correlate precisely with the sizes of 
the mitotic chromosomes, or their relative genomic lengths (Daks et al. 2010). Given 
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the similar sizes of the small macrochromosomes in the lacertid karyotypes (Srikulnath 
et al. 2014), the Z chromosome of the rapid racerunner may not be its 13th largest chro-
mosome, but it is evident that it belongs to the group of small macrochromosomes.

Our identification is in good agreement with the previous recent putative cytologi-
cal identifications of Z chromosomes in A. erythrurus and L. trilineata (Giovannotti 
et al. 2017, Schmid et al. 2019) using FISH and immunostaining, and with the genetic 
identifications: in several lacertid species using the qPCR approach mentioned above 
(Rovatsos et al. 2016a), and in Podarcis muralis (Laurenti, 1768) using coverage differ-
ences between genome sequences from male and female samples (Andrade et al. 2019). 
Chromosome 5, which belongs to the group of large macrochromosomes and was sug-
gested to be the sex chromosome in L. agilis (Srikulnath et al. 2014), is apparently not 
a sex chromosome in E. velox.

Identification of the E. velox sex chromosomes should lead to further studies of 
sex chromosome evolution and function in Lacertidae, including estimates of the 
extent of W chromosome genetic degeneration and its time course. Reliable identifi-
cation of the E. velox Z chromosome will facilitate obtaining Z-derived chromosome-
specific and region-specific probes for cytogenetic and genomic studies, including via 
LBC microdissection.
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