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Abstract

Functional connectivity is essential for the long-term persistence of populations. How-

ever, many studies assess connectivity with a focus on structural connectivity only.

Cityscapes, namely urban landscapes, are particularly dynamic and include numerous

potential anthropogenic barriers to animal movements, such as roads, traffic or build-

ings. To assess and compare structural connectivity of habitats and functional connec-

tivity of gene flow of an urban lizard, we here combined species distribution models

(SDMs) with an individual-based landscape genetic optimization procedure. The most

important environmental factors of the SDMs are structural diversity and substrate

type, with high and medium levels of structural diversity as well as open and rocky/

gravel substrates contributing most to structural connectivity. By contrast, water cover

was the best model of all environmental factors following landscape genetic optimiza-

tion. The river is thus a major barrier to gene flow, while of the typical anthropogenic

factors only buildings showed an effect. Nonetheless, using SDMs as a basis for land-

scape genetic optimization provided the highest ranked model for functional connec-

tivity. Optimizing SDMs in this way can provide a sound basis for models of gene

flow of the cityscape, and elsewhere, while presence-only and presence–absence mod-

elling approaches showed differences in performance. Additionally, interpretation of

results based on SDM factor importance can be misleading, dictating more thorough

analyses following optimization of SDMs. Such approaches can be adopted for man-

agement strategies, for example aiming to connect native common wall lizard popula-

tions or disconnect them from non-native introduced populations, which are currently

spreading in many cities in Central Europe.
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Introduction

Urbanization is a striking phenomenon of the Anthro-

pocene. It entails a substantial, continuous, highly

dynamic and usually irreversible land transformation

from a previously nonurban environment into a citys-

cape. However, recent analyses have shown that many

native species are able to persist in cities worldwide

(Aronson et al. 2014; Ives et al. 2016). Therefore, and in

the light of predictions of soaring global urbanization

(Seto et al. 2011), urban biodiversity will play an

increasingly important role for maintaining ecosystem

services, especially cultural ones, generated by human–
wildlife interactions.

Although urban areas are still underrepresented in

ecological research (Martin et al. 2012), the awareness

and application of ecological and evolutionary theory to

the cityscape is growing rapidly (McDonnell & Hahs

2015). The size of habitats as well as connecting
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corridors within a cityscape has been identified to best

explain intraurban variation in species richness

(Beninde et al. 2015). However, ensuring long-term per-

sistence of single species in cities may be particularly

difficult (Bj€orklund et al. 2010; R�ezouki et al. 2014;

Sumasgutner et al. 2014). Usually, habitat patches in

cities are small and isolated, habitat alteration dynamics

is high, and disturbance pervasive. Nonetheless, in a

review of behavioural responses to urbanization, Sol

et al. (2013) have shown that many species are able to

adjust to the challenges of the cityscape, either through

behavioural plasticity (Meill�ere et al. 2015) or through

evolutionary adaptation (Mueller et al. 2013). Such spe-

cies can thrive in urban areas and become urban resi-

dents (McDonnell & Hahs 2015).

At the same time, it has been shown repeatedly that

urban areas represent barriers to gene flow for nonur-

ban species, even highly mobile species, such as pine

martens, Martes martes (Ruiz-Gonz�alez et al. 2014) and

mountain lions, Puma concolor (Riley et al. 2006). It

remains open whetherand to what degree urban resi-

dents may also be affected by intraurban barriers. Barri-

ers could lead to arrays of disjunctive populations

within the cityscape. Unfortunately, our knowledge on

connectivity of urban areas is scarce and studies within

cityscapes are rare (LaPoint et al. 2015). Per definition,

urban residents find sufficient suitable habitat in cities.

However, like nonurban landscapes, a cityscape is a

heterogeneous environment with a mosaic of suitable

and nonsuitable habitats. Dispersal barriers such as traf-

fic arteries, highly disturbed habitats or vast spaces

devoid of vegetation may hamper gene flow among

subpopulations. This could lead to genetic drift in iso-

lated subpopulations and reduce the chance of recolo-

nization after local extinction. When exploring

connectivity in the landscape, it is important to distin-

guish ‘structural connectivity’ from ‘functional connec-

tivity’ (LaPoint et al. 2015). Structural connectivity refers

to physical components of the landscape and its habi-

tats. It is often assessed based on habitat suitability

maps, used to approximate how suitable the habitat is

that connects locations. Functional connectivity, on the

other hand, is a measure that has to be viewed from the

perspective of the organism under investigation and

describes actual gene flow between localities. One

approach to quantify functional connectivity is using

landscape genetics, which aims to explain genetic varia-

tion in space with landscape features. Thus far, studies

employing genetic analyses in cityscapes mainly

assessed the long-term viability of populations, with a

focus on population-based sampling to assess potential

source-sink metapopulation dynamics, while landscape

genetic studies are largely lacking. An exception is a

study on the white-footed mouse, Peromyscus leucopus,

by Munshi-South (2012), which identified urban canopy

cover as important for gene flow among populations.

However, and like most other population genetic

research in urban areas (LaPoint et al. 2015), a popula-

tion-based sampling scheme was followed here. Along

these lines of research Bj€orklund et al. (2010) showed

that some populations of great tits, Parus major, in green

spaces within a city function as ‘sink’ populations,

while others function as ‘source’ populations. In four

butterfly species and a skink dispersal was found not to

be impeded significantly across urban areas, with barely

detectable population structuring in these species

(Angold et al. 2006; Brashear et al. 2015). Importantly,

while all urban genetic studies described the long-term

effects of the cityscape on the population genetic struc-

ture of species, they did not compare structural and

functional connectivity or employ an individual-based

sampling scheme, which is important for this purpose

(LaPoint et al. 2015).

Individual-based sampling schemes make assignment

of individuals to populations obsolete, which is espe-

cially useful in continuously distributed species where a

priori population assignment would be difficult or even

impossible (Shirk et al. 2010; Landguth & Schwartz

2014). Compared to population-based sampling, it has

the advantage of allowing detection of population struc-

ture where this was not previously known or antici-

pated (Schwartz & McKelvey 2009). This sampling

scheme was also shown to be especially suitable for

landscape genetic questions (Cushman & Landguth

2010; Ruiz-Gonz�alez et al. 2014), as it is more represen-

tative of the spatial context and allows the identification

of population borders at a finer spatial scale.

Adopting an individual-based sampling scheme, we

here focus on the genetic population structure of the

common wall lizard, Podarcis muralis, a species typical

of anthropogenic habitats (Schulte 2008). The species is

native throughout the city of Trier, southwestern

Germany, although clumped in distribution along suit-

able habitat patches, such as railway tracks, urban vine-

yards as well as ancient Roman sites and other suitable

dry stone walls. We here aim to identify those environ-

mental factors of a cityscape that determine structural

as well as functional connectivity. We first mapped the

distribution of the species throughout the entire city

area and composed landscape models of environmental

factors. Subsequently, we use these landscape models to

develop species distribution models (SDMs) and derive

habitat suitability maps of the cityscape. Based on the

assumption that areas connected by more suitable habi-

tats provide better connectivity, these habitat suitability

maps were used to calculate structural connectivity, as

in the pairwise resistance between individuals. To cal-

culate pairwise genetic distance, we sampled 223
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individuals across the city and barcoded and genotyped

them at 17 microsatellite loci. Pairwise genetic distances

of individuals were used to develop landscape genetic

models of gene flow, depicting functional connectivity.

It has been shown previously that populations of the

common wall lizard can be strongly structured at small

spatial scales (<2 km), despite a continuous distribution

along favourable habitat, such as railway tracks (Schulte

et al. 2013). This raises concerns as to the functional

connectivity of populations of this species within the

cityscape. We therefore predict this population of com-

mon wall lizards to be structured and assume that gene

flow can be severely reduced by roads, especially those

with high traffic volume, which could lead to a puta-

tively high number of small isolated populations within

the cityscape. At the same time, we hypothesize that

southern aspect and dry stone walls, often found in

structurally diverse vineyards, and a rocky/gravel sub-

strate type, associated with railway tracks, will facilitate

gene flow, reducing population structure between

localities.

Material and methods

Species account

The common wall lizard is a small lacertid lizard with

a total length of up to 20 cm and a weight of 4–10 g.

The species is distributed from Spain to Turkey and

southern Italy to southwestern Germany. It is well

adapted to stone walls, and its post-glacial colonization

often closely tracked human advances within Europe,

such as the vineyards established by Romans on their

way to the North into Germany. Here, at its northern

range margin, the species is mainly found in vineyards,

along railway tracks, in quarries as well as at stone-

walls. However, it also inhabits urban areas containing

these or similar structures. Consequently, the common

wall lizard is considered an urban resident, thriving

also in frequently disturbed sites, such as along roads

and railway tracks with a high traffic volume or near

dense human visitor traffic. The species has become

invasive in northwestern Europe and North America,

with currently more than 100 populations of non-native

origin known to exist in Germany alone (Schulte et al.

2008; Schulte & Deichsel 2015).

Field methods

To best assess Trier’s common wall lizard population

proportionally to its abundance, we conducted field

surveys prior to sampling individuals. Field surveys

were conducted from March to July 2012 and covered

the entire sampling area (Fig. 1) with a total of

24.45 km² of Trier’s city centre and its contiguous resi-

dential areas. Based on these observations, we estab-

lished a fine-scale distribution map and noted the

spatial extent of presences of lizards. Afterwards, patch

specific lizard numbers were estimated in a standard-

ized procedure following the protocol of the German

Federal Agency for Nature Conservation, issued for

assessments of conservation status of the species pro-

tected under the Habitats Directive (PAN & IL€OK

2010). It entails a fixed walking speed for surveys to be

conducted early or late during the day, omitting the hot

hours of midday. The numbers of individuals counted

applying this procedure were compared to describe rel-

ative abundance of lizards at surveyed patches. Where

areas were inaccessible, potential distribution and abun-

dance were estimated from habitat availability and the

presence and abundance in its surroundings. We used

this inferred abundance map for the common wall

lizard in Trier to select 200 random points for sampling

single lizards throughout the city (using the ‘create ran-

dom points’ function in ARCGIS) weighted by their abun-

dance. In practice, this implemented a stratified random

sampling of individuals throughout the cityscape based

on the species’ distribution and abundance, which con-

stituted the basis for our individual-based sampling

scheme. We sampled 133 individuals from July to

September 2012 and another 90 individuals in April

and May 2013 (223 individuals in total; 9.1 individuals

per km2 of sampling area). Sampling individuals only

once within a sampling period was ensured by marking

them with a colour code which lasted for ca. 2–3 weeks.

Between periods, we prevented to sample individuals

twice by sampling different areas and by checking pho-

tographs taken from all specimens for individual identi-

fication. Furthermore, we checked all genotypes for

duplicates. We adjusted the number of sampled indi-

viduals from 200 to 223 to ensure representative sam-

pling, as we found larger abundances than previously

estimated while sampling at two sites.

Molecular genetic analyses

We obtained DNA by buccal swabbing individuals

using sterile dry swabs (Copan Diagnostics Inc, ’Ster-

ile R’) as described in Schulte et al. (2011). Within 12 h,

samples were stored at �20 °C until DNA extraction,

which was done according to the manufacturer’s proto-

col of the Qiagen DNEasy blood and tissue kit (as rec-

ommended in the Data S1 for buccal swabs, ATL buffer

was replaced by 400 lL PBS buffer).

To rule out that non-native lineages of the common

wall lizard occur in the sampling region, we sequenced

a 450-bp fraction of the mitochondrial cytochrome b

gene (Schulte et al. 2012b; Salvi et al. 2013; While et al.

© 2016 John Wiley & Sons Ltd
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2015) for all but two individuals (221 of 223). This was

pivotal as secondary contact of lineages with divergent

evolutionary origin can profoundly influence popula-

tion differentiation and inferences thereof. For this spe-

cies, this was especially important, as non-native

common wall lizards have established at over 100 local-

ities in Germany, both accidentally through transport

and cargo as well as deliberately by hobbyists (Schulte

& Deichsel 2015).

We used 50 lL PCRs, containing 0.0625 pmol/lL of

the primers LGlulk (50-AACCGCCTGTTGTCTT

CAACTA-30) and HPod (30-GGTGGAATGG

GATTTTGTCTG-50), 20 lL 5 Prime MasterMix and

25 lL purified water (Schulte et al. 2012b). PCR settings

were 15 min at 95 °C, 35 cycles of 30 s at 94 °C, 30 s at

43 °C, 90 s at 72 °C and 10 min at 72 °C. Sequences

were aligned with sequences of known geographic ori-

gin and of all lineages known to have established in

Germany: western France AY234155 (Busack et al.

2005); Calabria DQ001023, Tuscany DQ001028, eastern

France (native lineage) DQ001029, Venetia DQ001032

(Podnar et al. 2007); central Balkans HQ652887,

Romagna HQ652921, southern Alps HQ652963 (Schulte

et al. 2012b). A phylogenetic tree was fitted using Podar-

cis siculus and Podarcis melisellensis as out-groups

(HQ154646, AY185097, Podnar 2004). We used MEGA6

(Tamura et al. 2013) to assign lineages employing the

neighbour-joining method with 2000 bootstrap

replicates.

All 223 individuals were genotyped at 17 microsatel-

lite loci, 12 of which have been developed for Podarcis

muralis (B3, B4, C9: Nembrini & Oppliger 2003;

PmurC150, PmurC168, PmurC275-278, PmurC164,

PmurC038, PmurC028, PmurC356, PmurC109,

PmurC103; Heathcote et al. 2014), two for Zootoca vivi-

para (Lv-319 and Lv-472; Boudjemadi et al. 1999) and

three for Podarcis bocagei (Pb10, Pb50, Pb73; Pinho et al.

2004). Primers were labelled with FAM, TAMRA or

HEX. Multiplex PCR protocols were used with the fol-

lowing annealing temperatures: 57 °C for C9, B4, Pb73

and all PmurC-primers; 56 °C for B3, Pb10 and Lv319;

53 °C for Lv472 and Pb50. Using the HotMasterMix by

5PRIME or Multiplex MasterMix by Qiagen and Multi-

gene Gradient Thermal Cyclers (Labnet), amplifications

were conducted as recommended by manufacturers.

Multiplex PCRs were performed in 10 lL reaction mix

Fig. 1 The sampled cityscape of Trier;

black dots show sampled individuals

(N = 223); light grey = buildings and

roads; dark grey = railway tracks; light

blue = water cover (most prominently

the river Moselle).
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containing: 2–10 ng genomic DNA, 5.0 lL MasterMix,

2.0 lL water and 0.1 lM of each primer. Fragment

lengths of PCR products were determined on a MEGA-

BACE 1000 using the software FRAGMENT PROFILER 1.2

(Amersham Biosciences).

To test for the occurrence of null alleles, we used

MICRO-CHECKER (v2.2.3; van Oosterhout et al. 2004). FSTAT

(v2.9.3.2) was used to test for linkage disequilibria

among loci (Goudet 1995). Calculations of population

genetic parameters were conducted with GENALEX V6.5

(Peakall & Smouse 2012). Population structure was

inferred using GENELAND (Guillot et al. 2005). We ran

GENELAND in R 3.0.2 (R Core Team 2016). We calculated

Nei’s genetic distance (Nei et al. 1983) between individ-

uals using Alleles in Space to proxy functional connec-

tivity (Miller 2005). These distances were the basis for a

landscape genetic optimization approach in CIRCUITSCAPE

(v4.0.5.; McRae 2006; Shah & McRae 2008) in combina-

tion with the R-package ResistanceGA (Peterman 2014).

We used GENELAND to assess the spatial borders of

subpopulations, based on microsatellite multilocus

genotypes and their spatial distribution. We ran 800 000

Markov chain Monte Carlo simulations, with a burn-in

of 250 000, for K = 1–10. Furthermore, we used the cor-

related allele frequency model and the admixture model

in STRUCTURE and ran Markov chain Monte Carlo simula-

tions with a burn-in of 100 000 and 1 000 000 simula-

tions thereafter. We ran simulations for K = 1–10 with

10 iterations per K. We used STRUCTURE harvester (Earl &

von Holdt 2012) to determine the second-order rate of

change (ΔK) as suggested by Evanno et al. (2005). Fol-

lowing a hierarchical approach, we continued explo-

ration within clusters at the highest ΔK using the same

settings. Results of STRUCTURE were combined in CLUMPP

(v1.1.2; Jakobsson & Rosenberg 2007). Using ARCGIS

(v10.2.1 ©Esri Inc.), we plotted the results for spatial

representation.

Landscape modelling

We digitized the sampling area of the cityscape using

the world imagery embedded in ARCGIS (basemap; taken

on August 11, 2012; ARCGIS v10.2.1 © Esri Inc.) at a scale

of 1:2000 for 12 environmental factors. For further anal-

yses, we converted the digitized layers of environmen-

tal factors into a grid layer using the majority rule in

ARCGIS, containing 31 797 grid cells, without ‘no data’

cells. The grid size was set to 25 9 25 m, with each grid

cell covering 625 m2. This results in a reasonable com-

putation time; it also well represents the area at which

wall lizards can be expected to assess habitat quality

according to available information on home-range sizes

of Podarcis muralis of up to 50 m², which regularly

change between years (Schulte 2008). As recommended

by LaPoint et al. (2015), we did not limit our environ-

mental factors to those contained in typically available

data sets; rather we created nine of the 12 layers of

environmental factors specifically for this study, to

encompass all habitat requirements essential for Podarcis

muralis: (i) aspect grasps temperature differences

depending on cardinal point of slopes (eight levels:

northern/northwestern/northeastern/western/eastern/

southwestern/southeastern/southern); (ii) slope also

affects temperature differences independently from

aspect, with steeper slopes capturing more solar irradi-

ance then flat areas (continuous); (iii) substrate type

determines the absorption and storage capacities of

thermal radiation and moisture (four levels: sealed sur-

faces/open ground/rocky + gravel/none of these); (iv)

trees have negative effects due to shadowing (two

levels: canopy cover/no canopy cover); (v) vegetation

height determines the degree of protection from preda-

tors as well as the degree of habitat provision for

arthropods, that is proxy of food source (two levels:

herb/shrub); (vi) vegetation type determines the abun-

dance of arthropods, with less intensively managed and

more natural vegetation showing higher abundances

(four levels: planted vegetation/cultivated vegetation/

semi-natural vegetation/no vegetation); (vii) structural

diversity captures the capacity for escape behaviour by

the number of hiding places, such as crevices, joints or

hollow spaces (four levels: low/medium/high/none);

(viii) south-facing walls represent a preferred habitat

type (two levels: wall yes/no); (ix) buildings have nega-

tive effects due to shadowing (two levels: building yes/

no); (x) roads can be barriers to movement (two levels:

road yes/no), potentially mediated by (xi) the volume

of traffic (continuous factor scaled to maximum traffic

volume); (xii) water surfaces represent unsuitable habi-

tat (two levels: water yes/no). Further coding details

are given in the Section S1 (Supporting information).

This data set was analysed in two different ways: (i)

species distribution models (SDMs) were applied as

tools to identify the most important environmental fac-

tors predicting the presence of lizards and to generate

habitat suitability maps from which we inferred struc-

tural connectivity; (ii) a landscape genetic approach was

used with pairwise genetic distances between individu-

als to analyse the importance of environmental factors

as barriers (‘resistance’) within the landscape models

and assess functional connectivity. Artificial boundaries,

caused by the extent of the grid, can affect the inference

of resistances between individuals if they are too close

to this boundary. Potential movements of such individ-

uals can be artificially constrained by the proximity to

the grids boundary (Koen et al. 2010). For the landscape

genetic analysis, we therefore expanded, when neces-

sary, the extent of the environmental factor grids by

© 2016 John Wiley & Sons Ltd
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buffers around sample locations of individuals. We

chose a buffer distance of 1 km, equalling the maxi-

mum distance a wall lizard has been recorded to dis-

perse and strongly exceeding average dispersal

distances of <200 m (Schulte 2008). Buffered areas

partly extended beyond areas with known data for

environmental factors and we filled these areas with

random data values, in proportion to values of the

study area, that is with known data, following Koen

et al. (2010). Koen et al. (2010) showed that this does not

lead to overestimates of resistances when compared

with true data but alleviates the effects of artificial

boundaries. This increased the number of grid cells to

50 896.

Species distribution modelling

We used two SDM methods, a presence-only (PO)

method (Maxent) and a presence–absence (PA) method

(a generalized linear model, GLM), to build SDMs for

Podarcis muralis. Maxent is a machine learning method

following a maximum entropy approach (Phillips et al.

2004) implemented in the MAXENT software (v3.3.3k;

Phillips et al. 2006; Phillips & Dud�ık 2008). Maxent is

widely applied for PO data in species distribution mod-

elling and also used to explore and interpret the envi-

ronmental drivers shaping a species’ distribution

(Merow et al. 2013). Maxent uses presence locations,

background points and a set of predictor variables to

estimate the probability of presence (logistic output) for

each grid cell of the landscape. Circumventing the criti-

cism of interpreting the logistic output in this way

(Royle et al. 2012; Yackulic et al. 2013), it is commonly

viewed as a habitat suitability (Elith et al. 2011). The

background points are taken from the landscape and

are used to contrast the conditions at presence sites.

As the intensive field surveys for presence of lizards

also provides information on species absence, we addi-

tionally built a GLM for PA data (GLM, see McCullagh

& Nelder 1989), which is also frequently applied in spe-

cies distribution modelling (Franklin 2010). Instead of

background points, absences were used here to estimate

the probability of presence or habitat suitability.

Pseudo-absences were randomly created in cells with-

out presences (Barbet-Massin et al. 2012), using the ‘ran-

domPoints’ function of the R-package dismo (Hijmans

et al. 2016) in R 3.3.0 (R Core Team 2016).

To avoid data collinearity and model overfitting

(Burnham & Anderson 2002; Dormann et al. 2013), we

applied the following procedure to reduce the number

of predictors and determine the optimal model com-

plexity: In a first step, we checked the pairwise correla-

tions between all 12 environmental factors using

SDMtoolbox (Brown 2014) and removed factors with a

Pearson correlation coefficient larger than 0.7 (Dormann

et al. 2013).

PO model. We used all 223 presence points of the sam-

pled individuals and the remaining environmental pre-

dictors to run Maxent (settings see Section S2,

Supporting information). In a stepwise procedure, we

eliminated the predictor contributing least to the model,

using Maxent’s own analysis of variable contribution

and reran Maxent with the reduced predictor set. AICc

values were calculated for all models using NICHEANA-

LYST (v3.0; Qiao et al. 2015) to determine the best model

based on the minimum ΔAICc values (Burnham &

Anderson 2002; Warren & Seifert 2011). Because there

was more than one equally good model, we chose the

one with the smallest number of environmental factors

as the final predictor set. Although, to our knowledge,

the use of almost only categorical predictors is uncom-

mon in this application, Elith & Graham (2009) state

that categories are modelled well with Maxent.

PA model. To find the best predictor set for the GLM,

we chose a similar approach. We also used all 223 pres-

ences and started with the full uncorrelated predictor

set to build a GLM (settings see Section S2, Supporting

information). AICc values were calculated again, this

time with the R-package AICCMODAVG (Mazerolle 2016).

We then explored different predictor combinations,

dropping predictors identified as not significant by the

GLM, and as above identified the best model via mini-

mum AICc. For the model selection process, we used

10 000 pseudo-absences, as for this number, no repli-

cates are needed to enhance model quality (Barbet-Mas-

sin et al. 2012). To identify the most important predictor

variables, in turn, we dropped each variable from the

full model and calculated the difference in residual

deviance between the full and the reduced model. The

variable which leads to the largest change in deviance

is considered to be the most important one (Leathwick

et al. 2006; Elith et al. 2010).

Final model fit of PO model. In a last step, we ran the

final PO model with 10-fold cross-validation (CV), so

AUC (area under the curve of receiver-operator charac-

teristic) values could be calculated on independent test

data as a measure of model fit. Although AUC scores

for PO data as a measure of performance can be mis-

leading (Lobo et al. 2008), Merow et al. (2013) note that

AUC is appropriate for high sampling intensities, which

is the case in our study. As an additional performance

measure, we show the omission of test localities (or

extrinsic omission error, Anderson et al. 2003) with

respect to the maximum sum of test sensitivity plus

specificity (maxSSS) threshold, which is proposed for

© 2016 John Wiley & Sons Ltd
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PO data (Liu et al. 2013, 2016). It is calculated by Max-

ent and describes the proportion of test localities which

fall in areas predicted as unsuitable after thresholding

the continuous model output into a binary presence–
absence map.

Final model fit of PA model. We also ran the final PA

model with a 10-fold CV. Ten replicates were produced,

calculating 1000 new random pseudo-absences for each

replicate (Barbet-Massin et al. 2012). The fitted models

were predicted to the entire city area to generate suit-

ability maps (using the ‘predict.glm’ function, stats

package). Test AUC and the extrinsic omission error

were calculated using the dismo package (using the

‘evaluate’ and ‘threshold’ functions).

Structural connectivity was calculated from final

mean suitability maps, calculated over all CV folds and

replicates generated by both PO and PA modelling

approaches. Although these are the final mean suitabil-

ity maps as identified by both methods, we will refer to

them as the PO-raw model and the PA-raw model from

now onwards for clarity, and to distinguish them from

optimized models we created later on, based on these

raw models. For evaluation of structural connectivity,

we followed a similar approach as for the landscape

genetic analysis but excluding the optimization step.

We used CIRCUITSCAPE directly to calculate pairwise resis-

tances between individuals based on PO- and PA-raw

models and fitted a linear mixed effect model that eval-

uated their fit to the genetic distances of individuals

(these methods are explained in detail below and we

only skipped the optimization procedure implemented

in ResistanceGA at this stage). To enable ranking and

comparison of these PO- and PA-raw models of struc-

tural connectivity with landscape genetic models speci-

fied below, we calculated AICc values in the same way

as for landscape genetic analyses.

Landscape genetic analysis

Functional connectivity was assessed using pairwise

genetic distances of individuals and the R-package

ResistanceGA (Peterman 2014). We refer to this later in

the manuscript as an optimization procedure, as Resis-

tanceGA is a novel approach that transforms resistance

surfaces to optimally fit genetic data (Richardson et al.

2016), circumventing typical issues of subjectivity in

assigning resistance values. It also makes a wider

parameter space disposable for the process of opti-

mization, and additionally, ResistanceGA accounts for

spatial autocorrelation (Peterman et al. 2014; Richard-

son et al. 2016). Once pairwise genetic distances and

coordinates of sample sites of individuals have been

specified, it calls CIRCUITSCAPE (Shah & McRae 2008) to

calculate pairwise resistance distances between individ-

uals and employs a genetic algorithm to maximize fit

of resistance surfaces to the specified data set, based

on AICc values of linear mixed effect models. Due to

small intersample distances, we had to thin our sam-

ples to 198 individuals for calculations in CIRCUITSCAPE,

which allows a maximum of one sample location per

grid cell. As recommended by Peterman et al. (2014),

ResistanceGA was run twice for each environmental

factor. The runs were checked for convergence, and

AICc values were compared between runs for each

landscape model. There were only marginal differences

in AICc values between runs and no change in the

ranks of the best performing factors, while ranks chan-

ged slightly among lower ranked factors (for differ-

ences between runs among lower ranked factors see

Data S1). This enabled final ranking of landscape mod-

els by ΔAICc values.

In addition to environmental factors, we also used

the PO- and PA-raw models as a basis for the standard

optimization procedure in ResistanceGA, resulting in

PO- and PA-optim models, optimized to fit pairwise

genetic distances.

Comparing structural and functional connectivity is

difficult, especially when using suitability, or conduc-

tance values for the former and resistance values for

the latter. Nevertheless, CIRCUITSCAPE can perform analy-

ses using both surfaces, allowing to indicate computa-

tions to be based on conductance or resistance layers.

To infer which factors contribute most to PO- and

PA-raw and PO- and PA-optim models, we correlated

environmental factors with these models and also

extracted conductance (suitability scores) of PO- and

PA-raw models, as well as resistances of PO- and PA-

optim models per subcategory of environmental factors

(only possible for categorical factors). This was neces-

sary foremost for the optim models, as these went

through two independent optimization processes, mak-

ing interpretation of the contributing environmental

factors difficult.

As the best model of gene flow was supported with

ΔAICc ≥ 4, we did not start additional runs containing

multiple factors simultaneously. Additionally, we incor-

porated measures of goodness of fit of final models

using the R2
GLMM function by Nakagawa & Schielzeth

(2013), incorporated into the MuMIn package (Barton

2016).

Results

The cytochrome b sequences of all specimens belonged

to the eastern France lineage, which is native in this

region. Thus, a confounding effect of individuals of

non-native origin on our results is unlikely.
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Due to a high probability of a linkage disequilibrium,

we excluded locus Pb73, and analyses were therefore

based on 16 microsatellite loci. For five of these loci,

MICRO-CHECKER detected the possibility of null alleles

(PmurC275-278, PmurC164, C9, Lv319 and Lv472). As

Oosterhout values were below 0.2 in all cases, we did

not exclude any further loci.

The results of GENELAND showed a strong separation

of genetic clusters with a steep border along the river

Moselle (Fig. 3). Population membership was assigned

with probabilities ≥99.5% for all but three individuals of

the eastern population (91.9%, 96.3% and 64.8%), which

were sampled closest to the river. STRUCTURE results

showed the max. ΔK = 2 (eastern and western Trier –
similar to Geneland), while the likelihood was highest

at K = 3, suggesting some substructure in the eastern

part of the city.

The final predictor set used for the PO-raw model con-

sisted of the following environmental factors (listed in

order of per cent variable contribution; see Table 1): sub-

strate type, structural diversity, buildings, vegetation

type, trees, water, slope and aspect, while the remaining

four factors were not part of the model. Substrate type

and structural diversity were the two variables contribut-

ing most to the model (Table 1). In the PA-raw model,

substrate type, structural diversity, roads, buildings,

trees, vegetation type, slope, water and traffic were used

(listed in order of descending differences in deviance; see

Table 1). Here, substrate type and structural diversity

were also clearly the most important variables. Within

the substrate category ‘rocky/gravel’ was the most suit-

able subcategory, while ‘sealed surfaces’ were the least

suitable. For structural diversity, ‘no structural diversity’

was the least suitable subcategory, while ‘medium struc-

tural diversity’ was the most suitable. These results were

the same for both modelling methods (see Section S2,

Supporting information). The mean PO- and PA-raw

model habitat suitability maps are shown in Fig. 2. The

average AUC of the PO-raw model was 0.852 (�0.041

SD) and 0.862 (�0.007 SD) for the PA-raw model. Aver-

age test omission with respect to the maxSSS threshold

was 0.144 (�0.085 SD) for the PO-raw model, whereas it

was 0.598 (�0.021 SD) for the PA-raw model, which

would assign almost 60% of test presences to unsuitable

areas (if the suitability output was converted to a binary

map). Structural connectivity calculated directly with CIR-

CUITSCAPE better explained functional connectivity when

the PO-raw model was used, than with the PA-raw

model (ΔAICc > 5; Table 2).

Among environmental factors, water cover is the

highest ranked model following landscape genetic opti-

mization (compared to the respective second best model

(slope) with ΔAICc > 20 in both runs; Table 2). In a

comparison of models of environmental factors with

the models of structural connectivity, models of water

cover and slope ranked higher than both PO- and

PA-based calculations of structural connectivity. The

model of the environmental factor structural diversity

ranked between both of these calculations of structural

connectivity.

Using the PO-raw model surface as a basis for opti-

mization in ResistanceGA delivered the best model for

functional connectivity (PO-optim model), performing

better also than the model of water cover alone, while

the PA-optim model ranked lower than water cover but

above all other models. Both optim models were

transformed with the inverse monomolecular equation

(PO-optim model: shape = 0.373, max = 485.8; PA-

optim model: shape = 0.069, max = 248.2). Marginal

and conditional R2-values were similar between all

models (0.02–0.1 and 0.25–0.33, respectively).
Correlations of all environmental factors with the best

performing model, the PO-optim model, showed water

to correlate most strongly, followed canopy cover and

buildings. An evaluation of the median resistances of

PO- and PA-optim models per subcategories within

environmental factors showed that area covered by

water has the highest resistance, followed by buildings

and canopy cover. The median value of all other

Table 1 Importance of environmental factors to the final SDMs

assessed by D deviance for PO-raw model (a) and factor contri-

bution to PA-raw model (b). Environmental factors differ

between models due to model-specific variable selection

(a) PO-raw model

Environmental factor Percent contribution

Permutation

contribution

Substrate 31.1 16.2

Structural diversity 30.7 12.7

Buildings 11.7 16.3

Vegetation type 8.0 10.0

Canopy cover 5.9 20.1

Water cover 5.0 13.8

Slope 4.2 7.8

Aspect 3.4 3.3

(b) PA-raw model

Environmental factor D deviance

Substrate 122.7

Structural diversity 100.2

Roads 30.7

Buildings 28.5

Canopy cover 27.9

Vegetation type 26.0

Slope 23.7

Water cover 22.1

Traffic 18.1
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subcategories approached 1 (lowest resistance; his-

tograms of resistance values per subcategory are sup-

plied in the Supporting information).

Discussion

Natural vs. anthropogenic factors

Our landscape genetic analysis shows that the effect of

a natural barrier, the river Moselle, dominates the

genetic structuring of this urban population of common

wall lizards (both as a single factor landscape model as

well as by its high weighting in the PO-optim model,

the highest ranking model overall), although both river-

sides are connected by three large stone bridges and

one iron bridge. This indicates an isolation-by-barrier

scenario. Interestingly, among all prevailing anthro-

pogenic factors in the cityscape, for example roads, traf-

fic volume or walls, only resistances of buildings

contributed to the best landscape genetic model of func-

tional connectivity. This suggests that for this urban res-

ident, typical city features may indeed not represent

strong barriers. The river, on the other hand, acts as a

strong barrier. Similar results have been found for a

variety of other animal species (Eriksson et al. 2004;

Coulon et al. 2006; Marrotte et al. 2014), but none of

these studies was conducted within city boundaries,

and their spatial scales exceed ours by orders of magni-

tude. The only other intra-urban study of comparable

spatial scale revealed no structuring caused by a river

(Straub et al. 2015). However, focal species of this study

Fig. 2 Mean Maxent habitat suitability map (left), referred to as the PO-raw model in the text and mean GLM habitat suitability map

(right), referred to as the PA-raw model in the text; presences used to train the model are shown as black dots. Both models were

used to calculate pairwise resistances using CIRCUITSCAPE. Using the landscape genetic optimization procedure implemented in

ResistanceGA, these raw models were also optimized to fit genetic distances, resulting in PO- and PA-optim models.

Table 2 Results of the landscape genetic analyses showing

model rank and fit of environmental factors and SDMs. PO-

and PA-raw models were used to measure structural connec-

tivity

Environmental

factors and SDMs AICc DAICc

Marginal

R2

Conditional

R2

PO-optim model 47 351.38 0.05 0.28

Water cover 47 345.03 6.35 0.06 0.28

PA-optim model 47 335.22 16.16 0.10 0.33

Slope 47 324.71 26.67 0.10 0.33

PO-raw model 47 305.39 45.99 0.04 0.26

Structural

diversity

47 300.33 51.05 0.05 0.27

PA-raw model 47 299.51 51.87 0.04 0.27

Canopy cover 47 295.61 55.77 0.04 0.27

Substrate 47 292.87 58.51 0.09 0.33

Walls 47 287.07 64.31 0.03 0.26

Traffic 47 286.28 65.10 0.02 0.25

Buildings 47 284.63 66.75 0.03 0.26

Roads 47 283.54 67.84 0.03 0.26

Vegetation type 47 274.55 76.83 0.05 0.27

Aspect 47 256.63 94.75 0.04 0.29
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was the fire salamander, Salamandra salamandra, the lar-

vae of which predominantly live in running waters and

eventually may survive even in rivers. Apparently, the

four bridges connecting both riversides, one of which

also carries railway tracks, do not provide functional

connectivity that can negate the resistance of the river

for the lizard population investigated here.

It is contrary to our expectations that roads, and espe-

cially traffic volume, did not contribute to any of the

landscape genetic models. This also contradicts findings

in many other species (see Holderegger & Di Giulio

2010), such as a flightless ground beetle (Keller & Lar-

giad�er 2003) or a cricket (Vandergast et al. 2009), but

also in very mobile species such as the mountain lion,

for which freeways have been shown to significantly

reduce gene flow (Riley et al. 2006). In an urban popula-

tion of red squirrels, Sciurus vulgaris, however, roads

changed routine behaviour but did not alter frequency

of road crossings while dispersing (Fey et al. 2016). It

may be hypothesized that urban residents are more tol-

erant to roads than species occurring mainly outside of

cities. Even though we regularly found road-kills of

lizards during field-work, this must not necessarily pre-

vent dispersal and gene flow, as the relative frequency

of such events remains unknown. On the other hand,

the detectability of roads as barriers might also be influ-

enced by time lags that could mask its effect as a bar-

rier. As it takes time for a population to reach genetic

equilibria after the emergence of a new barrier, roads

could promote future differentiation of populations

although this signal remains undetectable presently (see

Epps & Keyghobadi 2015 for a review). This effect was

shown indirectly for cities, with the age of urban areas

found to impact gene flow most heavily in three reptile

species and a bird (Delaney et al. 2010). Thus, putative

cases of traffic volume impeding gene flow cannot be

ruled out for the lizard populations investigated here.

Functional vs. structural connectivity

Using AICc values to rank models, structural connectiv-

ity measured using the PO-raw model ranked lower

than the environmental factors water and slope in its

prediction for functional connectivity. Structural con-

nectivity measured from the PA-raw model ranked still

lower and was additionally outperformed by the envi-

ronmental factor structural diversity. To identify the

most important environmental factors for the PO- or

PA-raw model, typically tables of variable importance

or contribution are calculated and referred to. The envi-

ronmental factors structural diversity and substrate type

contributed most to both the PO- or PA-raw models

while water cover ranked low in both models (see

Table 2). Although water cover contributes little to

these models, the area of the river is nonetheless

depicted as unsuitable in habitat suitability maps. This

is more pronounced in the PO- than in the PA-raw

model, which might also explain differences in rank

when using these models for landscape genetic opti-

mization: The best model for functional connectivity

was obtained when using the PO-raw model as a basis

for optimization, resulting in the PO-optim model

(Table 3 and Fig. 4). The performance even surpassed

the best environmental factor of water cover. The PA-

optim model also ranked highly, but below water

(ΔAICc > 10 between models). Most weight of both PO-

and PA-optim model was – contrary to the PO-raw

model – attributed to environmental factors of water

cover, followed by buildings and canopy cover

(Table 4). Although structural connectivity assessed

from PO- and PA-raw models did not perform badly in

predicting functional connectivity, only referring to the

variable importance of environmental factors for these

models would point away from the river and towards

structural diversity and substrate type as most impor-

tant factors. This means that raw SDMs and the calcu-

lated contribution of factors do not predict the

underlying environmental factors responsible for func-

tional connectivity. At the same time, these models are

a useful basis for an optimization procedure, as imple-

mented in ResistanceGA. This exemplifies the difficul-

ties of inferring environmental factors responsible for

functional connectivity from structural connectivity

assessments.

Yet, after extraction of values computed for sepa-

rate subcategories within environmental factors for

each of the PO- and PA-raw- and PO- and PA-optim

models, we see remarkable congruence across analy-

ses: the three decisive subcategories, enforcing resis-

tance to gene flow, are water cover, buildings and

canopy cover (PO- and PA-optim models), and it is

exactly these three subcategories of both PO- and PA-

raw models that have received the lowest median

conductance scores (Table 4). This might be unique to

our data set, but a comparative assessment of this

potentially more prevalent association appears worth-

while.

The inference of functional connectivity in cityscapes,

and elsewhere, from suitability maps may, admittedly,

have the appeal of being a time-saving alternative to

the more time-consuming and costly evaluation of

functional connectivity via genetic analyses. Neverthe-

less, our results show that relying on them as the sole

basis, without running an optimization procedure and

extracting and comparing resistance and conductance

scores per subcategories, probably leads to erroneous

conclusions when evaluating gene flow. The results of

our functional and structural connectivity analyses

© 2016 John Wiley & Sons Ltd
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Table 4 Median resistance of optimized PO- and PA-optim models, as well as median conductance of PO- and PA-raw models per

subcategories of environmental factors. Absolute values are given as well as relative values, scaled to one to enable comparison

between models

Subcategory of

environmental

factor

PO-raw model PA-raw model PO-optim model PA-optim model

Median

conductance

Median

conductance

Median

resistance

Median

resistance

rel. abs. rel. abs. rel. abs. rel. abs.

Northern aspect 0.41 37 0.15 9 0.01 1.03 0.02 1.00

Northeastern

aspect

0.36 32 0.13 8 0.01 1.10 0.02 1.01

Eastern aspect 0.49 44 0.15 9 0.01 1.00 0.02 1.00

Southeastern

aspect

0.46 41 0.15 9 0.01 1.01 0.02 1.00

Southern aspect 0.48 43 0.15 9 0.01 1.00 0.02 1.00

Southwestern

aspect

0.48 43 0.15 9 0.01 1.01 0.02 1.00

Western aspect 0.44 39 0.15 9 0.01 1.01 0.02 1.00

Northwestern

aspect

0.49 43 0.13 8 0.01 1.00 0.02 1.01

No buildings 0.51 45 0.18 11 0.01 1.00 0.02 1.00

Buildings 0.11 10 0.05 3 0.20 34.10 0.24 14.30

No roads 0.40 36 0.13 8 0.01 1.03 0.02 1.01

Roads 0.59 53 0.32 19 0.01 1.00 0.02 1.00

No structural

diversity

0.44 39 0.15 9 0.01 1.01 0.02 1.00

Low structural

diversity

0.23 20 0.10 6 0.02 3.21 0.02 1.16

Medium structural

diversity

0.93 83 0.60 36 0.01 1.00 0.02 1.00

High structural

diversity

0.67 60 0.62 37 0.01 1.00 0.02 1.00

No substrate

type

0.30 27 0.10 6 0.01 1.35 0.02 1.16

Sealed substrate 0.46 41 0.15 9 0.01 1.01 0.02 1.00

Open substrate 0.73 65 0.37 22 0.01 1.00 0.02 1.00

Rocky gravel

substrate

1.00 89 1.00 60 0.01 1.00 0.02 1.00

No canopy cover 0.46 41 0.15 9 0.01 1.01 0.02 1.00

Canopy cover 0.12 11 0.05 3 0.17 28.97 0.24 14.30

No vegetation

type

0.45 40 0.15 9 0.01 1.01 0.02 1.00

Planted

vegetation

0.63 57 0.22 13 0.01 1.00 0.02 1.00

Cultivated

vegetation

0.36 32 0.10 6 0.01 1.10 0.02 1.16

Semi-natural

vegetation

0.48 43 0.18 11 0.01 1.01 0.02 1.00

No walls 0.36 32 0.12 7 0.01 1.08 0.02 1.04

Walls 0.51 46 0.20 12 0.01 1.00 0.02 1.00

No water 0.45 40 0.15 9 0.01 1.01 0.02 1.00

Water 0.05 4 0.03 2 1.00 171.26 1.00 58.45
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underpin the need for a cautious interpretation of

structural connectivity data with respect to dispersal

and gene flow. This, and similar findings by Aavik

et al. (2014) for the grassland plant species Lychnis flos-

cuculi, and by Mateo-S�anchez et al. (2015) for the

brown bear, Ursus arctos, reinforces the need to validate

functionality of structural connectivity, if not via genetic

analyses then through mark–recapture experiments.

However, a recent study on leopards, Panthera pardus,

(Fattebert et al. 2015), showed that predictions of struc-

tural connectivity can match dispersal routes well,

demonstrating that species-specific differences in the

importance of structural connectivity for dispersal have

to be considered.

Functional connectivity within the cityscape is still

not well understood (LaPoint et al. 2015). Potential dis-

crepancies between structural and functional connec-

tivity highlight that conservation measures need to be

informed by both. It is important to recall that citys-

cape and landscape genetic analyses reveal the resis-

tance of environmental factors to gene flow, while a

habitat suitability map identifies those environmental

factors of greatest importance for the occurrence of

individuals at a given site. Consequently, both

approaches complement each other (Driscoll et al.

2012) and should be used in this fashion when

assessing management measures (Neuwald & Temple-

ton 2013).

Implication for lizard conservation in the cityscape and
beyond

The river Moselle represents a major barrier, dividing

the lizard population of Trier into two separate clusters,

with the eastern cluster being further divided into two

separate subclusters (Fig. 3), although no single land-

scape factor sufficiently explains this latter separation.

The best model for functional connectivity, the PO-optim

model, includes more information than just the river and

we assume that this additional information pays tribute

to the population structure in eastern Trier. Contrary to

our assumption, none of the other environmental factors

appears to hamper gene flow within the city so strongly,

as to further separate individuals into highly isolated

clusters (Fig. 4). With respect to the wall lizard popula-

tion in Trier, this may relax conservation concerns. The

three genetic clusters are unlikely to go extinct in the

near future due to genetic stochasticity which can follow

complete isolation and small population sizes, a scenario

postulated for urban salamander populations (Munshi-

South et al. 2013). On the contrary, our analyses suggest

that urban lizards readily disperse along suitable

(a) STRUCTURE results

(b) GENELAND results

Fig. 3 STRUCTURE and GENELAND results for

all individuals; (a) STRUCTURE results

shown above indicate K = 3 to be most

likely, with one cluster west of the river

Moselle (red bars) and individuals east

of the river divided into two further clus-

ters (yellow and orange bars). (b) GENE-

LAND results shown below depict the

river as the main barrier to gene flow,

dividing individuals into a western clus-

ter (red area; congruent with individuals

shown in red in STRUCTURE plot) and an

eastern cluster (yellow area; corresponds

to individuals coloured yellow and

orange in STRUCTURE plot). Probabilities of

cluster affiliation were above 99.5% for

all but three individuals in GENELAND

results and showed a steep cline along

the river.
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elements of the cityscape. Interestingly, substrate type

did not rank highly, and although railway tracks are

strongly associated with our substrate type level rocky/

gravel, our results do not support their overarching

importance for gene flow. This is contrary to the

assumption that common wall lizards readily use rail-

way tracks as dispersal corridors (Schulte et al. 2013).

Even though common wall lizards cope well with

the challenges of an urban habitat, the long-term per-

sistence of native lineages inside German cities may be

compromised by the detrimental effect of non-native

invasive lineages. With no non-native haplotypes

among sampled lizards, an effect of non-native intro-

duced individuals is very unlikely. We cannot fully

rule out an introduction event of individuals of the

native haplotype, which have been detected elsewhere

in Germany (Schulte et al. 2012a). Foremost though, it

is non-native lineages that are rapidly expanding in

Germany and can displace native lineages upon sec-

ondary contact (Schulte et al. 2012b; While et al. 2015).

Identification of intra-urban environmental factors that

may hinder the expansion of non-native lineages, and

hence gene flow, is therefore pivotal for developing

mitigation strategies for a successful conservation of

native lineages. Admittedly, our results do not point at

an easy solution.

Conclusion

Our results demonstrate the difficulties of correctly

interpreting results from habitat suitability maps and

functional connectivity. Depending on a species’ ecol-

ogy the matrix of the cityscape determines specific

resistance levels to gene flow, making assessments of

functional connectivity for multi-species assemblages of

cities complex. Nevertheless, factors important for

intra-urban gene flow have to be subjected to the urban

planning process for effective conservation management

(Keller et al. 2014). There is great potential of such

knowledge to improve decision making in conservation

management and legislation in the cityscape (Barton

et al. 2015). Even though SDMs alone are not suitable

for assessing functional connectivity, our study also

shows that using them as a basis for landscape genetic

optimization provides better results than using simple

landscape models.
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